高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 最值、范围、存在性问题 Word版含答案
展开升级增分训练 最值、范围、存在性问题
1.(2016·贵阳监测考试)已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C上的点到一个焦点的距离的最小值为-.
(1)求椭圆C的方程;
(2)已知过点T(0,2)的直线l与椭圆C交于A,B两点,若在x轴上存在一点E,使∠AEB=90°,求直线l的斜率k的取值范围.
解:(1)设椭圆的半焦距长为c,
则由题设有
解得a=,c=,
∴b2=1,
故椭圆C的方程为+x2=1.
(2)由已知可得,直线l的方程为y=kx+2,以AB为直径的圆与x轴有公共点.
设A(x1,y1),B(x2,y2),AB中点为M(x0,y0),
将直线l:y=kx+2代入+x2=1,
得(3+k2)x2+4kx+1=0,
则Δ=12k2-12>0,
x1+x2=,x1x2=.
∴x0==,y0=kx0+2=,
|AB|=·
=·=,
∴
解得k4≥13,
即k≥或k≤-.
故所求斜率的取值范围为(-∞,-]∪[,+∞).
2.(2016·西安质检)如图所示,已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好在抛物线x2=8y的准线上.
(1)求椭圆C的标准方程;
(2)点P(2,),Q(2,-)在椭圆上,A,B是椭圆上位于直线PQ两侧的动点,当A,B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
解:(1)设椭圆C的标准方程为+=1(a>b>0).
∵椭圆的一个顶点恰好在抛物线x2=8y的准线y=-2上,
∴-b=-2,解得b=2.
又=,a2=b2+c2,
∴a=4,c=2.
可得椭圆C的标准方程为+=1.
(2)设A(x1,y1),B(x2,y2),
∵∠APQ=∠BPQ,则PA,PB的斜率互为相反数,
可设直线PA的斜率为k,
则PB的斜率为-k,
直线PA的方程为:y-=k(x-2),
联立消去y,
得(1+4k2)x2+8k(-2k)x+4(-2k)2-16=0,
∴x1+2=.
同理可得:x2+2==,
∴x1+x2=,x1-x2=,
kAB===.
∴直线AB的斜率为定值.
3.(2016·贵阳期末)已知椭圆C的两个焦点是(0,-)和(0,),并且经过点,抛物线E的顶点在坐标原点,焦点恰好是椭圆C的右顶点F.
(1)求椭圆C和抛物线E的标准方程;
(2)过点F作两条斜率都存在且互相垂直的直线l1,l2,l1交抛物线E于点A,B,l2交抛物线E于点G,H,求·的最小值.
解:(1)设椭圆C的标准方程为+=1(a>b>0),焦距为2c,则由题意得c=,
2a=+=4,
∴a=2,b2=a2-c2=1,
∴椭圆C的标准方程为+x2=1.
∴右顶点F的坐标为(1,0).
设抛物线E的标准方程为y2=2px(p>0),
∴=1,2p=4,
∴抛物线E的标准方程为y2=4x.
(2)设l1的方程:y=k(x-1),l2的方程:y=-(x-1),
A(x1,y1),B(x2,y2),G(x3,y3),H(x4,y4).
由
消去y得:k2x2-(2k2+4)x+k2=0,
∴Δ=4k4+16k2+16-4k4>0,
x1+x2=2+,x1x2=1.
同理x3+x4=4k2+2,x3x4=1,
∴·=(+)·(+)
=·+·+·+·
=·+||·
=|x1+1|·|x2+1|+|x3+1|·|x4+1|
=(x1x2+x1+x2+1)+(x3x4+x3+x4+1)
=8++4k2
≥8+2=16,
当且仅当=4k2,即k=±1时,·有最小值16.
4.已知椭圆C:+=1(a>b>0)的离心率为,以原点O为圆心,椭圆C的长半轴长为半径的圆与直线2x-y+6=0相切.
(1)求椭圆C的标准方程;
(2)已知点A,B为动直线y=k(x-2)(k≠0)与椭圆C的两个交点,问:在x轴上是否存在定点E,使得2+·为定值?若存在,试求出点E的坐标和定值;若不存在,请说明理由.
解:(1)由e=,得=,
即c=a,①
又以原点O为圆心,椭圆C的长半轴长为半径的圆为x2+y2=a2,
且该圆与直线2x-y+6=0相切,
所以a==,代入①得c=2,
所以b2=a2-c2=2,
所以椭圆C的标准方程为+=1.
(2)由
得(1+3k2)x2-12k2x+12k2-6=0.
设A(x1,y1),B(x2,y2),
所以x1+x2=,x1x2=.
根据题意,假设x轴上存在定点E(m,0),
使得2+·=(+)·=·EB―→为定值,
则·EB―→=(x1-m,y1)·(x2-m,y2)
=(x1-m)(x2-m)+y1y2
=(k2+1)x1x2-(2k2+m)(x1+x2)+(4k2+m2)
=,
要使上式为定值,即与k无关,
只需3m2-12m+10=3(m2-6),
解得m=,
此时,2+·=m2-6=-,
所以在x轴上存在定点E使得2+·为定值,且定值为-.
高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 数列 Word版含答案: 这是一份高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 数列 Word版含答案,共7页。
高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 函数与方程 Word版含答案: 这是一份高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 函数与方程 Word版含答案,共6页。试卷主要包含了已知定义在R上的函数f满足等内容,欢迎下载使用。
高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 定点、定值、证明问题 Word版含答案: 这是一份高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 定点、定值、证明问题 Word版含答案,共5页。试卷主要包含了已知椭圆C,设椭圆C1,椭圆C等内容,欢迎下载使用。