2023年中考数学一轮复习《勾股定理》基础巩固练习(含答案)
展开2023年中考数学一轮复习
《勾股定理》基础巩固练习
一 、选择题
1.在下列以线段a、b、c的长为边,能构成直角三角形的是( )
A.a=3,b=4,c=6 B.a=5,b=6,c=7
C.a=6,b=8,c=9 D.a=7,b=24,c=25
2.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=( )
A.6 B.8 C.10 D.12
3.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是( )
A.钝角三角形 B.锐角三角形 C.直角三角形 D.等边三角形
4.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )
A.8 B.4 C.6 D.无法计算
5.如图所示:数轴上点A所表示的数为a,则a的值是( )
A. +1 B.﹣1 C.﹣ +1 D.﹣﹣1
6.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )
A.90米 B.100米 C.120米 D.150米
7.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )
A.12 m B.13 m C.16 m D.17 m
8.将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是( )
A.5≤h≤12 B.5≤h≤24 C.11≤h≤12 D.12≤h≤24
9.三角形的两边长为6和8,要使这个三角形为直角三角形,则第三边长为( )
A.9 B.10 C.2或9 D.2或10
10.如图,在Rt△ABC中,∠A=90°,AB=BC,点F是AC边上一点.将ΔBCF沿直线BF翻折得到ΔBC'F,C'B交AC与点E.连接C'C,若C'F⊥AC,则CC′:BC′的比值为( )
A. B. C. D.
二 、填空题
11.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是 .
12.在Rt△ABC中,∠C=90o, AC=6,BC=8,则AB边的长是 .
13.已知+|y-12|+(z-13)2=0,则由x,y,z为三边组成的三角形是________.
14.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积= .
15.如图,在一次测绘活动中,某同学站在点A位置观测停放于B、C两处小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间距离为 米.
16.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC中点.若动点E以1cm/s速度从A点出发,沿着A→B→A的方向运动,设E点运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t值为 .
三 、解答题
17.如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=20.求:△ABD的面积.
18.如图,为修通铁路凿通隧道AC,量出∠C=90°,AB=5km,BC=4km,若每天凿隧道0.15km,问几天才能把隧道AC凿通?
19.如图,在△ABC中,点O是AC边上的一点.过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于F.
(1)求证:EO=FO;
(2)若CE=4,CF=3,你还能得到那些结论?
20.如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;
(2)点M,N分别在直线AD,AC上,且∠BMN=90°.
①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;
②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.
参考答案
1.D.
2.B
3.C.
4.A.
5.B
6.B.
7.D.
8.C.
9.D
10.B.
11.答案为:120 cm2.
12.答案为:10.
13.答案为:直角三角形.
14.答案为:24.
15.答案为:1500.
16.答案为:2秒或3.5秒或4.5秒.
17.解:在△ADC中,AD=15,AC=12,DC=9,
AC2+DC2=122+92=152=AD2,
即AC2+DC2=AD2,
∴△ADC是直角三角形,∠C=90°,
在Rt△ABC中,BC=16,
∴BD=BC﹣DC=16﹣9=7,
∴△ABD的面积=×7×12=42.
18.解:∵∠ACB=90°,AB=5km,BC=4km,
∴AC=3(km),3÷0.15=20(天).
答:20天才能把隧道AC凿通.
19.解:(1)∵CE是∠ACB的平分线,
∴∠1=∠2,
∵MN∥BC,
∴∠1=∠3,
∴∠2=∠3,
∴OE=OC,
同理可得OF=OC,
∴OE=OF;
(2)∵CE是∠ACB的平分线,
∴∠1=∠2,
∵CF是∠OCD的平分线,
∴∠4=∠5,
∴∠ECF=90°,
在Rt△ECF中,由勾股定理得EF=5.
∴OE=OF=OC=0.5EF=2.5.
20.解:(1)∵∠BAC=90°,AB=AC,
∴∠B=∠C=45°,
∵AD⊥BC,
∴BD=CD,∠BAD=∠CAD=45°,
∴∠CAD=∠B,AD=BD,
∵∠EDF=∠ADC=90°,
∴∠BDE=∠ADF,
∴△BDE≌△ADF(ASA),
∴BE=AF;
(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,
∴∠AMP=90°,
∵∠PAM=45°,
∴∠P=∠PAM=45°,
∴AM=PM,
∵∠BMN=∠AMP=90°,
∴∠BMP=∠AMN,
∵∠DAC=∠P=45°,
∴△AMN≌△PMB(ASA),
∴AN=PB,
∴AP=AB+BP=AB+AN,
在Rt△AMP中,∠AMP=90°,AM=MP,
∴AP=AM,
∴AB+AN=AM;
②在Rt△ABD中,AD=BD=AB=,
∵∠BMN=90°,∠AMN=30°,
∴∠BMD=90°﹣30°=60°,
在Rt△BDM中,DM=,
∴AM=AD﹣DM=﹣.
数学八年级下册17.1 勾股定理练习题: 这是一份数学八年级下册17.1 勾股定理练习题,共7页。试卷主要包含了下列三角形中,是直角三角形的是等内容,欢迎下载使用。
中考数学一轮知识复习和巩固练习考点16 勾股定理及其逆定理(基础巩固) (含详解): 这是一份中考数学一轮知识复习和巩固练习考点16 勾股定理及其逆定理(基础巩固) (含详解),共11页。
中考总复习:勾股定理及其逆定理-- 巩固练习(基础): 这是一份中考总复习:勾股定理及其逆定理-- 巩固练习(基础),共6页。