![2023年中考数学一轮复习《与圆有关的性质》基础巩固练习(含答案)第1页](http://www.enxinlong.com/img-preview/2/3/14028912/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学一轮复习《与圆有关的性质》基础巩固练习(含答案)第2页](http://www.enxinlong.com/img-preview/2/3/14028912/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学一轮复习《与圆有关的性质》基础巩固练习(含答案)第3页](http://www.enxinlong.com/img-preview/2/3/14028912/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023年中考数学一轮复习 基础巩固练习(含答案)
2023年中考数学一轮复习《与圆有关的性质》基础巩固练习(含答案)
展开
这是一份2023年中考数学一轮复习《与圆有关的性质》基础巩固练习(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习《与圆有关的性质》基础巩固练习一 、选择题1.如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为( )A.50° B.80° C.280° D.80°或280°2.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( )A.15° B.18° C.20° D.28°3.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为( )A.40° B.50° C.80° D.100°4.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=( )A.20° B.40° C.50° D.80°5.小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是( ) 6.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为( )A.40cm B.60cm C.80cm D.100cm7.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为( )A.6.5米 B.9米 C.13米 D.15米8.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=( )A.∠ACD B.∠ADB C.∠AED D.∠ACB9.如图,AB是⊙O的直径,C、D是⊙O上两点,分别连接AC、BC、CD、OD.∠DOB=140°,则∠ACD=( )A.20° B.30° C.40° D.70°10.如图,△ABC中,∠B=60°,∠ACB=75°,点D是BC边上一动点,以AD为直径作⊙O,分别交AB、AC于点E、F,若弦EF的最小值为1,则AB的长为( ).A.2 B. C. D.二 、填空题11.下图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD=______.12.如图,量角器上的C、D两点所表示的读数分别是80°、50°,则∠DBC度数为 .13.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是 .14.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为 m.15.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O,分别作AB、BC、AC的垂线,垂足分别为E、F、G,连接EF,若OG=3,则EF为 .16.如图,已知⊙O的直径AB=12,E、F为AB的三等分点,M、N为弧AB上两点,且∠MEB=∠NFB=45°,则EM+FN= .三 、解答题17.如图,点A、B、C是圆O上的三点,AB∥OC(1)求证:AC平分∠OAB;(2)过点O作OE⊥AB于E,交AC于点P,若AB=2,∠AOE=30°,求圆O的半径OC及PE的长. 18.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=BC.延长DA与⊙O的另一个交点为E,连接AC,CE. (1)求证:∠B=∠D; (2)若AB=13,BC﹣AC=7,求CE的长. 19.如图,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D.(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长. 20.如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM. 21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.
参考答案1.B2.B3.D.4.D5.B.6.B7.A8.A9.A.10.B.11.答案为30°.12.答案为:15°.13.答案为:32°.14.答案为:0.2.15.答案为:4.16.答案为:2.17.证明:(1)∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC.∴∠BAC=∠OAC.即AC平分∠OAB.(2)∵OE⊥AB,∴AE=BE=AB=1.又∵∠AOE=30°,∠PEA=90°,∴∠OAE=60°.OA=2,∴∠EAP=∠OAE=30°,∴PE=,即PE的长是.18.证明:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,
又∵DC=CB,∴AD=AB,∴∠B=∠D(2)解:设BC=x,则AC=x﹣7,
在Rt△ABC中,AC2+BC2=AB2, 即(x﹣7)2+x2=132,解得:x1=12,x2=﹣5(舍去),
∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,
∵CD=CB,∴CE=CB=1219.解:(1)证明:如图,过点O作OE⊥AB于点E.则CE=DE,AE=BE.∴AE-CE=BE-DE,即AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,如答图,连结OA,OC,∴CE===2.AE===8.∴AC=AE-CE=8-2.20.解:(1)连接OA、OC,过O作OH⊥AC于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=2,故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.21.解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC=8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.
相关试卷
这是一份2023年中考数学一轮复习《与圆有关的计算》基础巩固练习(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮知识复习和巩固练习考点21 圆的有关概念、性质与圆有关的位置关系(基础巩固) (含详解),共12页。
这是一份中考数学一轮复习《与圆有关的性质》课时跟踪练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。