初中数学人教版八年级下册17.1 勾股定理随堂练习题
展开【典例1】我市夏季经常受台风天气影响,台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km和400km,且AB=500km,以台风中心为圆心周围250km以内为受影响区域.
(1)求证:∠ACB=90°;
(2)海港C受台风影响吗?为什么?
(3)若台风的速度为40km/h,则台风影响该海港持续的时间有多长?
【思路点拨】
(1)利用勾股定理的逆定理得出△ABC是直角三角形;
(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响;
(3)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.
【解题过程】
解:(1)∵AC=300km,BC=400km,AB=500km,
∴AC2+BC2=AB2.
∴△ABC是直角三角形,
∴∠ACB=90°;
(2)海港C受台风影响.
理由如下:如图,过点C作CD⊥AB于D.
∵S△ABC=12AC•BC=12AB•CD,
∴CD=AC⋅BCAB=300×400500=240(km),
∵250>240,
∴海港C受到台风影响;
(3)当EC=250km,FC=250km时,正好影响C港口.
在Rt△CED中,由勾股定理得
ED=EC2-CD2=2502-2402=70(km),
∴EF=140km,
∵台风的速度为20km/h,
∴140÷40=3.5(h).
∴台风影响该海港持续的时间为3.5h.
1.(2021秋•阜宁县期中)中国古代《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折者高几何.意思是:一根竹子,原高1丈(1丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?
2.(2021秋•钢城区期末)如图,某研究性学习小组为测量学校C与河对岸工厂B之间的距离,在学校附近选一点A,利用测量仪器测得∠A=60°,∠C=90°,AC=2km.据此,可求得学校与工厂BC之间的距离是多少?
3.(2021秋•大丰区期末)如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.
4.(2021秋•金台区期末)《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路对面车速检测仪的正前方50m处,过了4s后,测得小汽车与车速检测仪间的距离为130m.这辆小汽车超速了吗?请说明理由.
5.(2021秋•渭城区期末)如图,∠AOB=90°,OA=8m,OB=3m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的路程与机器人行走的路程相等,那么机器人行走的路程BC是多少?
6.(2021秋•河口区期末)东营市某中学在校园一角开辟了一块四边形的“试验田”,把课堂的“死教材”转换为生动的“活景观”,学生们在课堂上学习理论之余,还可以到“试验田”实际操练,对生物的发展规律有了更为直观的认识.如图,四边形ABCD是规划好的“试验田”,经过测量得知:∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.求四边形ABCD的面积.
7.(2021秋•高邮市期末)图1是超市购物车,图2为超市购物车侧面示意图,测得∠ACB=90°,支架AC=4.8dm,CB=3.6dm.
(1)两轮中心AB之间的距离为 dm;
(2)若OF的长度为50dm,支点F到底部DO的距离为5dm,试求∠FOD的度数.
8.(2021秋•青岛期末)如图1,青岛创建文明城市期间,路边设立了一块宣传牌,图2为从此场景中抽象出的数学模型,宣传牌(AB)顶端有一根绳子(AC),自然垂下后,绳子底端离地面还有0.7m(即BC=0.7),工作人员将绳子底端拉到离宣传牌3m处(即点E到AB的距离为3m),绳子正好拉直,已知工作人员身高(DE)为1.7m,求宣传牌(AB)的高度.
9.(2021秋•玄武区校级期末)滑撑杆在悬窗中应用广泛.如图,某款滑撑杆由滑道OC,撑杆AB、BC组成,滑道OC固定在窗台上.悬窗关闭或打开过程中,撑杆AB、BC的长度始终保持不变.当悬窗关闭时,如图①,此时点A与点O重合,撑杆AB、BC恰与滑道OC完全重合;当悬窗完全打开时,如图②,此时撑杆AB与撑杆BC恰成直角,即∠B=90°,测量得OA=12cm,撑杆AB=15cm,求滑道OC的长度.
10.(2021秋•麦积区期末)一架2.5m长的梯子AB斜靠在一竖直的墙AC上,这时BC为0.7m.如果梯子的顶端A沿墙下滑0.4m,那么梯子底端B在水平方向上滑动了多少米?
11.(2021秋•任城区期中)如图,高速公路上有A,B两点相距10km,C,D为两村庄,已知DA=4km,CB=6km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,求BE的长.
12.(2021秋•榆林期末)小王与小林进行遥控赛车游戏,终点为点A,小王的赛车从点C出发,以4米/秒的速度由西向东行驶,同时小林的赛车从点B出发,以3米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,AC=40米,AB=30米.
(1)出发3秒钟时,遥控信号是否会产生相互干扰?
(2)当两赛车距A点的距离之和为35米时,遥控信号是否会产生相互干扰?
13.(2021秋•高州市月考)已知一个三角形工件尺寸(单位:mm)如图,计算高l的长.
14.(2021秋•滕州市期中)如图,地面上放着一个小凳子(AB与地面平行),点A到墙面(墙面与地面垂直)的距离为40cm.在图①中,一木杆的一端与墙角O重合,另一端靠在点A处,OA=50cm.
(1)求小凳子的高度;
(2)在图②中另一木杆的一端与点B重合,另一端靠在墙上的点C处.若OC=90cm,木杆BC比凳宽AB长60cm,求小凳子宽AB和木杆BC的长度.
15.(2021秋•万州区期末)为推进乡村振兴,把家乡建设成为生态宜居、交通便利的美丽家园,某地大力修建崭新的公路.如图所示,现从A地分别向C、D、B三地修了三条笔直的公路AC、AD和AB,C地、D地、B地在同一笔直公路上,公路AC和公路CB互相垂直,又从D地修了一条笔直的公路DH与公路AB在H处连接,且公路DH和公路AB互相垂直,已知AC=9千米,AB=15千米,BD=5千米.
(1)求公路CD的长度;
(2)若修公路DH每千米的费用是2000万元,请求出修建公路DH的总费用.
16.(2021秋•莲池区期末)如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男孩拽着绳子另一端向右走,绳端从C移动到E,同时小船从A移动到B,且绳长始终保持不变.回答下列问题:
(1)根据题意可知:AC BC+CE(填“>”、“<”、“=”).
(2)若CF=5米,AF=12米,AB=9米,求小男孩需向右移动的距离.(结果保留根号)
17.(2021秋•重庆期末)如图是俱乐部新打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形ADCG和长方形DEFC均为木质平台的横截面,点G在AB上,点C在GF上,点D在AE上,经过现场测量得知:CD=1米,AD=15米.
(1)小敏猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度;
(2)为加强游戏安全性,俱乐部打算再焊接一段钢索BF,经测量DE=3米,请你求出要焊接的钢索BF的长.(结果不必化简成最简二次根式)
18.(2021秋•沙坪坝区校级期末)如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A、B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村庄为方便村民取水,决定在河边新建一个取水点H(A、B、H在同一直线上),并新建一条路CH,测得CB=13千米,CH=3千米,HB=2千米.
(1)CH是不是从村庄C到河边的最近路?请通过计算加以说明;
(2)求新路CH比原路CA短多少千米?
19.(2021春•南岗区校级月考)如图,已知射线MN表示一艘轮船东西方向的航行路线,在M的北偏东60°方向上有一灯塔A,灯塔A到M处的距离为100海里.
(1)求灯塔A到航线MN的距离;
(2)在航线MN上有一点B,且∠MAB=15°,若轮船的航速为50海里/时,求轮船从M到B处所用的时间为多少小时?(结果保留根号)
20.(2021秋•三元区期中)如图,四边形ABCD为某街心公园的平面图,经测量AC=BC=AD=80米,BD=803米,且∠C=90°.
(1)求∠DAC的度数;
(2)若直线CA为公园的车辆进出口道路(道路的宽度忽略不计),工作人员想要在点D处安装一个监控装置来监控道路CA的车辆通行情况,已知摄像头能监控的最大距离为80米,求被监控到的道路长度为多少米?
人教版八年级下册18.2.1 矩形复习练习题: 这是一份人教版八年级下册18.2.1 矩形复习练习题,文件包含专题185矩形的判定与性质压轴题专项讲练人教版解析版docx、专题185矩形的判定与性质压轴题专项讲练人教版原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
初中数学人教版八年级下册18.2.2 菱形随堂练习题: 这是一份初中数学人教版八年级下册18.2.2 菱形随堂练习题,文件包含专题184菱形的判定与性质压轴题专项讲练人教版解析版docx、专题184菱形的判定与性质压轴题专项讲练人教版原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
初中数学人教版八年级下册17.2 勾股定理的逆定理课堂检测: 这是一份初中数学人教版八年级下册17.2 勾股定理的逆定理课堂检测,文件包含专题173勾股定理的逆定理重点题专项讲练人教版解析版docx、专题173勾股定理的逆定理重点题专项讲练人教版原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。