终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    高中数学高考2022届高考数学一轮复习(新高考版) 第3章 高考专题突破一 第3课时 利用导数证明不等式

    立即下载
    加入资料篮
    高中数学高考2022届高考数学一轮复习(新高考版) 第3章 高考专题突破一 第3课时 利用导数证明不等式第1页
    高中数学高考2022届高考数学一轮复习(新高考版) 第3章 高考专题突破一 第3课时 利用导数证明不等式第2页
    高中数学高考2022届高考数学一轮复习(新高考版) 第3章 高考专题突破一 第3课时 利用导数证明不等式第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考2022届高考数学一轮复习(新高考版) 第3章 高考专题突破一 第3课时 利用导数证明不等式

    展开

    这是一份高中数学高考2022届高考数学一轮复习(新高考版) 第3章 高考专题突破一 第3课时 利用导数证明不等式,共12页。试卷主要包含了将不等式转化为函数的最值问题,将不等式转化为两个函数的,适当放缩证明不等式等内容,欢迎下载使用。
    题型一 将不等式转化为函数的最值问题
    例1 (2021·赣州模拟)已知函数f(x)=1-eq \f(ln x,x),g(x)=eq \f(ae,ex)+eq \f(1,x)-bx,若曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直.
    (1)求a,b的值;
    (2)证明:当x≥1时,f(x)+g(x)≥eq \f(2,x).
    (1)解 因为f(x)=1-eq \f(ln x,x),x>0,
    所以f′(x)=eq \f(ln x-1,x2),f′(1)=-1.
    因为g(x)=eq \f(ae,ex)+eq \f(1,x)-bx,所以g′(x)=-eq \f(ae,ex)-eq \f(1,x2)-b.
    因为曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,
    所以g(1)=1,且f′(1)·g′(1)=-1,
    所以g(1)=a+1-b=1,g′(1)=-a-1-b=1,
    解得a=-1,b=-1.
    (2)证明 由(1)知,g(x)=-eq \f(e,ex)+eq \f(1,x)+x,
    则f(x)+g(x)≥eq \f(2,x)⇔1-eq \f(ln x,x)-eq \f(e,ex)-eq \f(1,x)+x≥0.
    令h(x)=1-eq \f(ln x,x)-eq \f(e,ex)-eq \f(1,x)+x(x≥1),
    则h(1)=0,h′(x)=eq \f(-1+ln x,x2)+eq \f(e,ex)+eq \f(1,x2)+1=eq \f(ln x,x2)+eq \f(e,ex)+1.
    因为x≥1,所以h′(x)=eq \f(ln x,x2)+eq \f(e,ex)+1>0,
    所以h(x)在[1,+∞)上单调递增,
    所以当x≥1时,h(x)≥h(1)=0,
    即1-eq \f(ln x,x)-eq \f(e,ex)-eq \f(1,x)+x≥0,
    所以当x≥1时,f(x)+g(x)≥eq \f(2,x).
    思维升华 待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.
    跟踪训练1 (2021·武汉调研)已知函数f(x)=ln x+eq \f(a,x),a∈R.
    (1)讨论函数f(x)的单调性;
    (2)当a>0时,证明f(x)≥eq \f(2a-1,a).
    (1)解 f′(x)=eq \f(1,x)-eq \f(a,x2)=eq \f(x-a,x2)(x>0).
    当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.
    当a>0时,若x>a,则f′(x)>0,
    函数f(x)在(a,+∞)上单调递增;
    若01时,x-1>0,ex-2-e-x>0,∴F′(x)>0,
    ∴F(x)在(1,+∞)上单调递增,∴F(x)>F(1)=0,
    故当x>1时,f(x)>f(2-x),(*)
    由f(x1)=f(x2),x1≠x2,可设x1f(2-x2).
    又x12.
    方法二 (比值代换法)
    设00,
    设g(t)=ln t-eq \f(2t-1,t+1)(t>1),
    ∴g′(t)=eq \f(1,t)-eq \f(2t+1-2t-1,t+12)=eq \f(t-12,tt+12)>0,
    ∴当t>1时,g(t)单调递增,∴g(t)>g(1)=0,
    ∴ln t-eq \f(2t-1,t+1)>0,故x1+x2>2.
    例2 已知函数f(x)=ln x-ax有两个零点x1,x2.
    (1)求实数a的取值范围;
    (2)求证:x1·x2>e2.
    (1)解 f′(x)=eq \f(1,x)-a=eq \f(1-ax,x)(x>0),
    ①若a≤0,则f′(x)>0,不符合题意;
    ②若a>0,令f′(x)=0,解得x=eq \f(1,a).
    当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,a)))时,f′(x)>0;
    当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a),+∞))时,f′(x)0,解得0x2-2ax+1.
    (1)解 由f(x)=ex-2x+2a,x∈R,得f′(x)=ex-2,x∈R,令f′(x)=0,得x=ln 2.
    于是当x变化时,f′(x),f(x)的变化情况如下表:
    故f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞).
    f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=2(1-ln 2+a),无极大值.
    (2)证明 设g(x)=ex-x2+2ax-1,x∈R.于是g′(x)=ex-2x+2a,x∈R.
    由(1)知当a>ln 2-1时,g′(x)的最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,
    所以g(x)在R内单调递增.
    于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
    又g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
    即ex-x2+2ax-1>0,故ex>x2-2ax+1.
    3.已知函数f(x)=eln x-ax(a∈R).
    (1)讨论f(x)的单调性;
    (2)当a=e时,证明:xf(x)-ex+2ex≤0.
    (1)解 f′(x)=eq \f(e,x)-a(x>0).
    ①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;
    ②若a>0,则当0eq \f(e,a)时,f′(x)0,所以只需证f(x)≤eq \f(ex,x)-2e,
    当a=e时,由(1)知,f(x)在(0,1)上单调递增,
    在(1,+∞)上单调递减.所以f(x)max=f(1)=-e,
    记g(x)=eq \f(ex,x)-2e(x>0),则g′(x)=eq \f(x-1ex,x2),
    所以当00时,f(x)≤g(x),
    即f(x)≤eq \f(ex,x)-2e,即xf(x)-ex+2ex≤0.
    4.已知函数f(x)=ln x-ax(a∈R).
    (1)讨论函数f(x)在(0,+∞)上的单调性;
    (2)证明:ex-e2ln x>0恒成立.
    (1)解 f(x)的定义域为(0,+∞),
    f′(x)=eq \f(1,x)-a=eq \f(1-ax,x),
    当a≤0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增,
    当a>0时,令f′(x)=0,得x=eq \f(1,a),
    ∴x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,a)))时,f′(x)>0;x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a),+∞))时,f′(x)0,即证ex-2>ln x,
    令φ(x)=ex-x-1,∴φ′(x)=ex-1.
    令φ′(x)=0,得x=0,∴x∈(-∞,0)时,φ′(x)0,
    ∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
    ∴φ(x)min=φ(0)=0,
    即ex-x-1≥0,即ex≥x+1,当且仅当x=0时取“=”.
    同理可证ln x≤x-1,当且仅当x=1时取“=”.
    由ex≥x+1(当且仅当x=0时取“=”),
    可得ex-2≥x-1(当且仅当x=2时取“=”),
    又ln x≤x-1,即x-1≥ln x,当且仅当x=1时取“=”,
    所以ex-2≥x-1≥ln x且两等号不能同时成立,
    故ex-2>ln x.即证原不等式成立.
    方法二 令φ(x)=ex-e2ln x,φ(x)的定义域为(0,+∞),
    φ′(x)=ex-eq \f(e2,x),令h(x)=ex-eq \f(e2,x),
    ∴h′(x)=ex+eq \f(e2,x2)>0,
    ∴φ′(x)在(0,+∞)上单调递增.
    又φ′(1)=e-e20,
    故∃x0∈(1,2),使φ′(x0)=0,
    即-eq \f(e2,x0)=0,
    即=eq \f(e2,x0),
    ∴当x∈(0,x0)时,φ′(x)0,
    ∴φ(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
    ∴φ(x)min=φ(x0)=-e2ln x0=eq \f(e2,x0)-e2ln x0=eq \f(e2,x0)-=eq \f(e2,x0)-e2(2-x0)=e2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x0)+x0-2))=e2·eq \f(x0-12,x0)>0,
    故φ(x)>0,即ex-e2ln x>0,即证原不等式成立.
    5.(2018·全国Ⅰ)已知函数f(x)=eq \f(1,x)-x+aln x.
    (1)讨论f(x)的单调性;
    (2)若f(x)存在两个极值点x1,x2,
    证明:eq \f(fx1-fx2,x1-x2)2,令f′(x)=0,得
    x=eq \f(a-\r(a2-4),2)或x=eq \f(a+\r(a2-4),2).
    当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(a-\r(a2-4),2)))∪eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+\r(a2-4),2),+∞))时,
    f′(x)0.
    所以f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(a-\r(a2-4),2))),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+\r(a2-4),2),+∞))上单调递减,在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a-\r(a2-4),2),\f(a+\r(a2-4),2)))上单调递增.
    (2)证明 由(1)知,f(x)存在两个极值点当且仅当a>2.
    由于f(x)的两个极值点x1,x2满足x2-ax+1=0,
    所以x1x2=1,不妨设x11.
    由于eq \f(fx1-fx2,x1-x2)=-eq \f(1,x1x2)-1+aeq \f(ln x1-ln x2,x1-x2)
    =-2+aeq \f(ln x1-ln x2,x1-x2)=-2+aeq \f(-2ln x2,\f(1,x2)-x2),
    所以eq \f(fx1-fx2,x1-x2)

    相关试卷

    2024年(新高考)高考数学一轮复习突破练习4.5《第1课时 利用导数证明不等式》(含详解):

    这是一份2024年(新高考)高考数学一轮复习突破练习4.5《第1课时 利用导数证明不等式》(含详解),共8页。试卷主要包含了求证等内容,欢迎下载使用。

    高中数学高考第3章 §3 6 利用导数证明不等式:

    这是一份高中数学高考第3章 §3 6 利用导数证明不等式,共12页。

    (新高考)高考数学一轮复习讲义第3章§3.6利用导数证明不等式(含详解):

    这是一份(新高考)高考数学一轮复习讲义第3章§3.6利用导数证明不等式(含详解),共12页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map