高中数学高考第4章 §4 6 函数y=Asin(ωx+φ)
展开
这是一份高中数学高考第4章 §4 6 函数y=Asin(ωx+φ),共29页。
知识梳理
1.简谐运动的有关概念
2.用“五点法”画y=Asin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找五个特征点
3.函数y=sin x的图象经变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的两种途径
常用结论
1.函数y=Asin(ωx+φ)+k图象平移的规律:“左加右减,上加下减”.
2.由y=sin ωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移eq \f(φ,ω)个单位长度而非φ个单位长度.
3.函数y=Asin(ωx+φ)图象的对称轴由ωx+φ=kπ+eq \f(π,2),k∈Z确定;对称中心由ωx+φ=kπ,k∈Z确定其横坐标.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)把y=sin x的图象上各点的横坐标缩短为原来的eq \f(1,2),纵坐标不变,所得图象对应的函数解析式为y=sin eq \f(1,2)x.( × )
(2)将y=sin 2x的图象向右平移eq \f(π,6)个单位长度,得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))的图象.( √ )
(3)函数f(x)=Asin(ωx+φ)(A≠0)的最大值为A,最小值为-A.( × )
(4)如果y=Acs(ωx+φ)的最小正周期为T,那么函数图象的相邻两个对称中心之间的距离为eq \f(T,2).( √ )
教材改编题
1.为了得到函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(3x-\f(π,4)))的图象,只要把y=sin 3x的图象( )
A.向右平移eq \f(π,4)个单位长度
B.向左平移eq \f(π,4)个单位长度
C.向右平移eq \f(π,12)个单位长度
D.向左平移eq \f(π,12)个单位长度
答案 C
2.为了得到y=3cseq \b\lc\(\rc\)(\a\vs4\al\c1(3x+\f(π,8)))的图象,只需把y=3cseq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,8)))图象上的所有点的( )
A.纵坐标伸长到原来的3倍,横坐标不变
B.横坐标伸长到原来的3倍,纵坐标不变
C.纵坐标缩短到原来的eq \f(1,3),横坐标不变
D.横坐标缩短到原来的eq \f(1,3),纵坐标不变
答案 D
3.如图,某地一天从6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b,A>0,0
相关试卷
这是一份高中数学高考第23讲 函数y=Asin(ωx+φ)的图象及应用(达标检测)(学生版),共7页。
这是一份高中数学高考第23讲 函数y=Asin(ωx+φ)的图象及应用(达标检测)(教师版),共21页。
这是一份高中数学高考第4讲 函数y=Asin(ωx+φ)的图象及应用,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。