终身会员
搜索
    上传资料 赚现金

    高中数学高考第35讲 等比数列及其前n项和(讲)(学生版) 试卷

    立即下载
    加入资料篮
    高中数学高考第35讲 等比数列及其前n项和(讲)(学生版)第1页
    高中数学高考第35讲 等比数列及其前n项和(讲)(学生版)第2页
    高中数学高考第35讲 等比数列及其前n项和(讲)(学生版)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考第35讲 等比数列及其前n项和(讲)(学生版)

    展开

    这是一份高中数学高考第35讲 等比数列及其前n项和(讲)(学生版),共7页。试卷主要包含了等比数列的有关概念,等比数列的有关公式,等比数列的性质等内容,欢迎下载使用。



    知识梳理
    1.等比数列的有关概念
    (1)定义
    如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为eq \f(an+1,an)=q(q≠0,n∈N*).
    (2)等比中项
    如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项⇔G2=ab.
    “a,G,b成等比数列”是“G是a与b的等比中项”的充分不必要条件.
    2.等比数列的有关公式
    (1)通项公式:an=a1qn-1.
    (2)前n项和公式:Sn=eq \b\lc\{(\a\vs4\al\c1(na1,q=1,,\f(a1(1-qn),1-q)=\f(a1-anq,1-q),q≠1.))
    3.等比数列的性质
    已知数列{an}是等比数列,Sn是其前n项和(m,n,p,q,r,k∈N*)
    (1)若m+n=p+q=2r,则am·an=ap·aq=aeq \\al(2,r).
    (2)数列am,am+k,am+2k,am+3k,…仍是等比数列.
    (3)数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时{an}的公比q≠-1).
    常用结论
    1.正确理解等比数列的单调性
    当q>1,a1>0或0当q>1,a1<0或00时 ,{an}是递减数列;
    当q=1时,{an}是常数列;
    当q=-1时,{an}是摆动数列.
    2.记住等比数列的几个常用结论
    (1)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an))),{aeq \\al(2,n)},{an·bn},eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,bn)))仍是等比数列.
    (2)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,…为等比数列,公比为qk.
    (3)一个等比数列各项的k次幂,仍组成一个等比数列,新公比是原公比的k次幂.
    (4){an}为等比数列,若a1·a2·…·an=Tn,则Tn,eq \f(T2n,Tn),eq \f(T3n,T2n),…成等比数列.
    (5)当q≠0,q≠1时,Sn=k-k·qn(k≠0)是{an}成等比数列的充要条件,此时k=eq \f(a1,1-q).
    (6)有穷等比数列中,与首末两项等距离的两项的积相等.特别地,若项数为奇数时,还等于中间项的平方.
    题型归纳
    题型1 等比数列的基本运算
    【例1-1】(2020春•辽源期末)在等比数列{an}中,a1=1,a10=3,则a5a6=( )
    A.3B.27C.3D.243
    【例1-2】(2020春•赤峰期末)若等比数列{an}的前n项和为Sn,且S3=3,S6=9,则S9=( )
    A.12B.18C.21D.24
    【例1-3】(2020•新课标Ⅲ)设等比数列{an}满足a1+a2=4,a3﹣a1=8.
    (1)求{an}的通项公式;
    (2)记Sn为数列{lg3an}的前n项和.若Sm+Sm+1═Sm+3,求m.
    【跟踪训练1-1】(2020春•广州期末)已知数列{an}的首项为1,数列{bn}为等比数列且bn=an+1an,若b5b6=2,则a11=( )
    A.16B.21C.31D.32
    【跟踪训练1-2】(2020•新课标Ⅱ)记Sn为等比数列{an}的前n项和.若a5﹣a3=12,a6﹣a4=24,则Snan=( )
    A.2n﹣1B.2﹣21﹣nC.2﹣2n﹣1D.21﹣n﹣1
    【跟踪训练1-3】(2020•山东)已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.
    (1)求{an}的通项公式;
    (2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前100项和S100.
    【名师指导】
    等比数列基本量运算的解题策略
    (1)等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)便可迎刃而解.
    (2)等比数列的前n项和公式涉及对公比q的分类讨论,当q=1时,{an}的前n项和Sn=na1;当q≠1时,{an}的前n项和Sn=eq \f(a11-qn,1-q)=eq \f(a1-anq,1-q)..
    题型2 等比数列的判定与证明
    【例2-1】(2019春•玉田县期末)已知数列{an}的前n项和为Sn,且满足Sn=32an+b(n∈N*,b∈R,b≠0).
    ( I)求证:{an}是等比数列;
    ( II)求证:{an+1}不是等比数列.
    【跟踪训练2-1】(2019•广西二模)已知数列{an}中,a1=1,an+1=2an+1,(n∈N*).
    (1)求证:数列{an+1}是等比数列;
    (2)求数列{an}的前n项和.
    【名师指导】
    等比数列的4种常用判定方法
    题型3 等比数列的性质及应用
    【例3-1】(2020春•宣城期末)已知各项均为正数的等比数列{an}的前n项和为Sn,an<an+1,n∈N*,a4•a14=9,a8+a10=10,则数列{an}的公比为( )
    A.12B.13C.2D.3
    【例3-2】(2020春•绵阳期末)若等比数列{an}的前n项和为Sn,且S5=10,S10=30,则S20=( )
    A.80B.120C.150D.180
    【跟踪训练3-1】(2020春•五华区校级期末)已知正项等比数列{an}中,a3=a4a2,若a1+a2+a3=7,则数列的前十项和S10=( )
    A.511B.512C.1023D.1024
    【跟踪训练3-2】(2020春•广东期末)设等比数列{an}的前n项和为Sn,若S2020S1010=3,则S3030S1010=( )
    A.9B.7C.5D.4
    【名师指导】
    1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am·an=ap·aq”,可以减少运算量,提高解题速度.
    2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.
    3.等比数列{an}中,所有奇数项之和S奇与所有偶数项之和S偶具有的性质,设公比为q.
    (1)若共有2n项,则eq \f(S偶,S奇)=q;
    (2)若共有2n+1项,eq \f(S奇-a1,S偶)=q.
    4.等比数列{an}中,Sk表示它的前k项和.当q≠-1时,有Sk,S2k-Sk,S3k-S2k,…也成等比数列,公比为qk.定义法
    若eq \f(an+1,an)=q(q为非零常数,n∈N*)或eq \f(an,an-1)=q(q为非零常数且n≥2,n∈N*),则{an}是等比数列
    中项
    公式法
    若数列{an}中,an≠0且aeq \\al(2,n+1)=an·an+2(n∈N*),则数列{an}是等比数列
    通项
    公式法
    若数列通项公式可写成an=c·qn-1(c,q均是不为0的常数,n∈N*),则{an}是等比数列
    前n项和
    公式法
    若数列{an}的前n项和Sn=k·qn-k(k为常数且k≠0,q≠0,1),则{an}是等比数列

    相关试卷

    高中数学高考第35讲 等比数列及其前n项和(讲)(教师版):

    这是一份高中数学高考第35讲 等比数列及其前n项和(讲)(教师版),共11页。试卷主要包含了等比数列的有关概念,等比数列的有关公式,等比数列的性质等内容,欢迎下载使用。

    高中数学高考第35讲 等比数列及其前n项和(达标检测)(学生版):

    这是一份高中数学高考第35讲 等比数列及其前n项和(达标检测)(学生版),共7页。

    高中数学高考第34讲 等差数列及其前n项和(讲)(学生版):

    这是一份高中数学高考第34讲 等差数列及其前n项和(讲)(学生版),共7页。试卷主要包含了等差数列的有关概念,等差数列的有关公式等内容,欢迎下载使用。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map