高中数学高考第九章 9 1直线的方程-学生版(1)
展开
这是一份高中数学高考第九章 9 1直线的方程-学生版(1),共10页。试卷主要包含了直线方程的五种形式,直线l等内容,欢迎下载使用。
进门测
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)根据直线的倾斜角的大小不能确定直线的位置.( )
(2)坐标平面内的任何一条直线均有倾斜角与斜率.( )
(3)直线的倾斜角越大,其斜率就越大.( )
(4)直线的斜率为tan α,则其倾斜角为α.( )
(5)斜率相等的两直线的倾斜角不一定相等.( )
(6)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( )
作业检查
无
第2课时
阶段训练
题型一 直线的倾斜角与斜率
例1 (1)已知直线l的倾斜角为α,斜率为k,那么“α>eq \f(π,3)”是“k>eq \r(3)”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)直线l过点P(1,0),且与以A(2,1),B(0,eq \r(3))为端点的线段有公共点,则直线l斜率的取值范围为 .
引申探究
1.若将题(2)中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.
2.若将题(2)中的B点坐标改为(2,-1),其他条件不变,求直线l倾斜角的范围.
已知过定点P(2,0)的直线l与曲线y=eq \r(2-x2)相交于A,B两点,O为坐标原点,当△AOB的面积取到最大值时,直线l的倾斜角为( )
A.150° B.135° C.120° D.不存在
题型二 求直线的方程
例2 根据所给条件求直线的方程:
(1)直线过点(-4,0),倾斜角的正弦值为eq \f(\r(10),10);
(2)直线过点(5,10),到原点的距离为5;
(3)过点A(-5,-4)作直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5,求直线l的方程.
求适合下列条件的直线方程:
(1)经过点P(3,2)且在两坐标轴上的截距相等;
(2)过点A(-1,-3),斜率是直线y=3x的斜率的-eq \f(1,4)倍;
(3)过点A(1,-1)与已知直线l1:2x+y-6=0相交于B点且|AB|=5.
题型三 直线方程的综合应用
命题点1 与基本不等式相结合求最值问题
例3 已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.
命题点2 由直线方程解决参数问题
例4 已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a的值.
直线l过点P(1,4),分别交x轴的正半轴和y轴的正半轴于A,B两点,O为坐标原点,当|OA|+|OB|最小时,求直线l的方程.
第3课时
阶段重难点梳理
1.直线的倾斜角
(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.
(2)范围:直线l倾斜角的范围是[0°,180°).
2.斜率公式
(1)若直线l的倾斜角α≠90°,则斜率k=tan α.
(2)P1(x1,y1),P2(x2,y2)在直线l上且x1≠x2,则l的斜率k=eq \f(y2-y1,x2-x1).
3.直线方程的五种形式
【知识拓展】
1.直线系方程
(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).
(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+m=0(m∈R).
2.两直线平行或重合的充要条件
直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0平行或重合的充要条件是A1B2-A2B1=0.
3.两直线垂直的充要条件
直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0.
重点题型训练
典例 设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求直线l的方程;
(2)若l在两坐标轴上的截距互为相反数,求a.
1.过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为( )
A.1 B.4
C.1或3 D.1或4
2.直线x+(a2+1)y+1=0的倾斜角的取值范围是( )
A.[0,eq \f(π,4)] B.[eq \f(3π,4),π)
C.[0,eq \f(π,4)]∪(eq \f(π,2),π) D.[eq \f(π,4),eq \f(π,2))∪[eq \f(3π,4),π)
3.如果A·C
相关试卷
这是一份高中数学高考第九章 9 9范围、最值、定点、定值问题-学生版(1),共16页。试卷主要包含了若OA⊥OB等内容,欢迎下载使用。
这是一份高中数学高考第九章 9 6双曲线-学生版,共13页。试卷主要包含了双曲线定义,双曲线的标准方程和几何性质,已知直线l与双曲线C,已知M是双曲线C,已知点A,B分别是双曲线C等内容,欢迎下载使用。
这是一份高中数学高考第九章 9 8曲线与方程-学生版,共12页。试卷主要包含了如图,已知圆E等内容,欢迎下载使用。