高中数学高考课后限时集训51 圆的方程 作业
展开
这是一份高中数学高考课后限时集训51 圆的方程 作业,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
圆的方程建议用时:45分钟一、选择题1.已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则取最大面积时,该圆的圆心的坐标为( )A.(-1,1) B.(-1,0)C.(1,-1) D.(0,-1)D [由x2+y2+kx+2y+k2=0知所表示圆的半径r==,要使圆的面积最大,须使半径最大,所以当k=0时,rmax==1,此时圆的方程为x2+y2+2y=0,即x2+(y+1)2=1,所以圆心为(0,-1).]2.以(a,1)为圆心,且与两条直线2x-y+4=0,2x-y-6=0同时相切的圆的标准方程为( )A.(x-1)2+(y-1)2=5 B.(x+1)2+(y+1)2=5C.(x-1)2+y2=5 D.x2+(y-1)2=5A [由题意得,点(a,1)到两条直线的距离相等,且为圆的半径r.∴=,解得a=1.∴r==,∴所求圆的标准方程为(x-1)2+(y-1)2=5.]3.设P(x,y)是曲线x2+(y+4)2=4上任意一点,则的最大值为( )A.+2 B.C.5 D.6A [的几何意义为点P(x,y)与点A(1,1)之间的距离.易知点A(1,1)在圆x2+(y+4)2=4的外部,由数形结合可知的最大值为+2=+2.故选A.]4.动点A在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点的轨迹方程是( )A.(x+3)2+y2=4 B.(x-3)2+y2=4C.(2x-3)2+4y2=1 D.+y2=C [设中点M(x,y),则动点A(2x-3,2y).∵点A在圆x2+y2=1上,∴(2x-3)2+(2y)2=1,即(2x-3)2+4y2=1.故选C.]5.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2 B.8C.4 D.10C [设圆的方程为x2+y2+Dx+Ey+F=0,则解得∴圆的方程为x2+y2-2x+4y-20=0.令x=0,得y=-2+2或y=-2-2,∴M(0,-2+2),N(0,-2-2)或M(0,-2-2),N(0,-2+2),∴|MN|=4,故选C.]二、填空题6.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为________.4 [如图所示,圆心M(3,-1)与直线x=-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.]7.圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为________.(x-2)2+(y-1)2=1 [设对称圆的方程为(x-a)2+(y-b)2=1,圆心(1,2)关于直线y=x的对称点为(2,1),故对称圆的方程为(x-2)2+(y-1)2=1.]8.圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,)在圆C内,则m的范围为________.(0,4) [设圆心为C(a,0),由|CA|=|CB|得(a+1)2+12=(a-1)2+32.所以a=2.半径r=|CA|==.故圆C的方程为(x-2)2+y2=10.由题意知(m-2)2+()2<10,解得0<m<4.]三、解答题9.已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)求的最大值和最小值.[解] (1)由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,∴圆心C的坐标为(2,7),半径r=2.又|QC|==4,∴|MQ|max=4+2=6,|MQ|min=4-2=2.(2)可知表示直线MQ的斜率k.设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.由直线MQ与圆C有交点,所以≤2,可得2-≤k≤2+,∴的最大值为2+,最小值为2-.10.如图,等腰梯形ABCD的底边AB和CD长分别为6和2,高为3.(1)求这个等腰梯形的外接圆E的方程;(2)若线段MN的端点N的坐标为(5,2),端点M在圆E上运动,求线段MN的中点P的轨迹方程.[解] (1)由已知可知A(-3,0),B(3,0),C(,3),D(-,3),设圆心E(0,b),由|EB|=|EC|可知(0-3)2+(b-0)2=(0-)2+(b-3)2,解得b=1.所以r2=(0-3)2+(1-0)2=10.所以圆的方程为x2+(y-1)2=10.(2)设P(x,y),由点P是MN中点,得M(2x-5,2y-2).将M点代入圆的方程得(2x-5)2+(2y-3)2=10,即+=.1.(2018·全国卷Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6] B.[4,8]C.[,3] D.[2,3]A [圆心(2,0)到直线的距离d==2,所以点P到直线的距离d1∈[,3].根据直线的方程可知A,B两点的坐标分别为A(-2,0),B(0,-2),所以|AB|=2,所以△ABP的面积S=|AB|d1=d1.因为d1∈[,3],所以S∈[2,6],即△ABP面积的取值范围是[2,6].]2.若直线ax+2by-2=0(a>0,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则+的最小值为( )A.1 B.5C.4 D.3+2D [由题意知圆心C(2,1)在直线ax+2by-2=0上,∴2a+2b-2=0,整理得a+b=1,∴+=(a+b)=3++≥3+2=3+2,当且仅当=,即b=2-,a=-1时,等号成立.∴+的最小值为3+2.]3.已知圆C截y轴所得的弦长为2,圆心C到直线l:x-2y=0的距离为,且圆C被x轴分成的两段弧长之比为3∶1,则圆C的方程为________.(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2 [设圆C的方程为(x-a)2+(y-b)2=r2,则点C到x轴,y轴的距离分别为|b|,|a|.由题意可知∴或故所求圆C的方程为(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2.]4.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.[解] (1)由题意知,直线AB的斜率k=1,中点坐标为(1,2).则直线CD的方程为y-2=-(x-1),即x+y-3=0.(2)设圆心P(a,b),则由点P在CD上得a+b-3=0.①又因为直径|CD|=4,所以|PA|=2,所以(a+1)2+b2=40.②由①②解得 或 所以圆心P(-3,6)或P(5,-2).所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.1.(2019·厦门模拟)设点P(x,y)是圆:x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则·的最大值为________.12 [由题意,知=(2-x,-y),=(-2-x,-y),所以·=x2+y2-4,由于点P(x,y)是圆上的点,故其坐标满足方程x2+(y-3)2=1,故x2=-(y-3)2+1,所以·=-(y-3)2+1+y2-4=6y-12.易知2≤y≤4,所以,当y=4时,·的值最大,最大值为6×4-12=12.]2.在平面直角坐标系xOy中,曲线Γ:y=x2-mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由.(2)求证:过A,B,C三点的圆过定点.[解] 由曲线Γ:y=x2-mx+2m(m∈R),令y=0,得x2-mx+2m=0.设A(x1,0),B(x2,0),可得Δ=m2-8m>0,则m<0或m>8,x1+x2=m,x1x2=2m.令x=0,得y=2m,即C(0,2m).(1)若存在以AB为直径的圆过点C,则·=0,得x1x2+4m2=0,即2m+4m2=0,所以m=0(舍去)或m=-.此时C(0,-1),AB的中点M即圆心,半径r=|CM|=,故所求圆的方程为+y2=.(2)证明:设过A,B两点的圆的方程为x2+y2-mx+Ey+2m=0,将点C(0,2m)代入可得E=-1-2m,所以过A,B,C三点的圆的方程为x2+y2-mx-(1+2m)y+2m=0.整理得x2+y2-y-m(x+2y-2)=0.令可得或故过A,B,C三点的圆过定点(0,1)和.
相关试卷
这是一份高中数学高考课后限时集训68 参数方程 作业,共3页。
这是一份高中数学高考课后限时集训51 直线与圆、圆与圆的位置关系 作业,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学高考课后限时集训50 圆的方程 作业,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。