初中数学人教版八年级上册12.3 角的平分线的性质综合训练题
展开角的平分线的性质(基础)
【学习目标】
1.掌握角平分线的性质,理解三角形的三条角平分线的性质.
2.掌握角平分线的判定及角平分线的画法.
3. 熟练运用角的平分线的性质解决问题.
【要点梳理】
要点一、角的平分线的性质
角的平分线的性质:角的平分线上的点到角两边的距离相等.
要点诠释:
用符号语言表示角的平分线的性质定理:
若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.
要点二、角的平分线的判定
角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.
要点诠释:
用符号语言表示角的平分线的判定:
若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB
要点三、角的平分线的尺规作图
角平分线的尺规作图
(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.
(2)分别以D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB内部交于点C.
(3)画射线OC.
射线OC即为所求.
要点四、三角形角平分线的性质
三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.
三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC的内心为,旁心为,这四个点到△ABC三边所在直线距离相等.
【典型例题】
类型一、角的平分线的性质
1.(2020春•启东市校级月考)如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.
【思路点拨】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.
【答案与解析】
证明:∵BD为∠ABC的平分线,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB,
∵点P在BD上,PM⊥AD,PN⊥CD,
∴PM=PN.
【总结升华】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.
2、如图, △ABC中, ∠C = 90, AC = BC, AD平分∠CAB, 交BC于D, DE⊥AB于E, 且AB=6, 则△DEB的周长为( )
A. 4 B. 6 C.10 D. 以上都不对
【答案】B;
【解析】由角平分线的性质,DC=DE,△DEB的周长=BD +DE+BE =BD+DC+BE=AC+BE=AE+BE=AB=6.
【总结升华】将△DEB的周长用相等的线段代换是关键.
举一反三:
【变式】已知:如图,AD是△ABC的角平分线,且,则△ABD与△ACD的面积之比为( )
A.3:2 B. C.2:3 D.
【答案】B;
提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵,则△ABD与△ACD的面积之比为.
3、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.
【思路点拨】利用角平分线的性质证明PD=PE,再根据“HL”定理证明△OPD≌△OPE,从而得到∠OPD=∠OPE,∠DPF=∠EPF.再证明△DPF≌△EPF,得到结论.
【答案与解析】
解:DF=EF.
理由如下:
∵OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,
∴PD=PE,
由HL定理易证△OPD≌△OPE,
∴∠OPD=∠OPE,∴∠DPF=∠EPF.
在△DPF与△EPF中,
,
∴△DPF≌△EPF,
∴DF=EF.
【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.
类型二、角的平分线的判定
4、已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF.求证:AF为∠BAC的平分线.
【答案与解析】
证明: ∵CE⊥AB,BD⊥AC(已知)
∴∠CDF=∠BEF=90°
∵∠DFC=∠BFE(对顶角相等)
∵ BF=CF(已知)
∴△DFC≌△EFB(AAS)
∴DF=EF(全等三角形对应边相等)
∵FE⊥AB,FD⊥AC(已知)
∴点F在∠BAC的平分线上(到一个角的两边距离相等的点在这个角的平分线上)
即AF为∠BAC的平分线
【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”的条件.如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性.
举一反三:
【变式】(2014秋•肥东县期末)已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.
【答案】
证明:在Rt△PFD和Rt△PGE中,
,
∴Rt△PFD≌Rt△PGE(HL),
∴PD=PE,
∵P是OC上一点,PD⊥OA,PE⊥OB,
∴OC是∠AOB的平分线.
人教版八年级上册第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.2 幂的乘方随堂练习题: 这是一份人教版八年级上册第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.2 幂的乘方随堂练习题,共4页。
初中数学人教版八年级上册14.1.4 整式的乘法同步达标检测题: 这是一份初中数学人教版八年级上册14.1.4 整式的乘法同步达标检测题,共5页。
初中数学人教版八年级上册14.2.2 完全平方公式复习练习题: 这是一份初中数学人教版八年级上册14.2.2 完全平方公式复习练习题,共4页。