所属成套资源:人教版数学七年级上册同步知识讲解+巩固练习(基础版+提高版)(含答案)
人教版数学七年级上册《有理数》全章复习与巩固(基础)知识讲解 (含答案)
展开
《有理数》全章复习与巩固(基础) 【学习目标】 1.理解正负数的意义,掌握有理数的概念.
2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.
3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用.5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念 1.有理数的分类: (1)按定义分类: (2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态 表示冰点表示正数与负数的界点0非正非负,是一个中性数 2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0. 要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“”号即可.(3)多重符号的化简:数字前面“”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a的绝对值记作. (2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: , .2.运算律: (1)交换律: ① 加法交换律:a+b=b+a; ②乘法交换律:ab=ba;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab)c=a(bc) (3)分配律:a(b+c)=ab+ac要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法、近似数及精确度 1.科学记数法:把一个大于10的数表示成的形式(其中,是正整数),此种记法叫做科学记数法.例如:200 000=.2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到米,说明结果与实际数相差不超过米,而有效数字往往用来比较几个近似数哪个更精确些.【典型例题】类型一、有理数相关概念 1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________. 【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1 【解析】根据定义,把符合条件的有理数写全. 【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.举一反三:【变式】(1)的倒数是 ;的相反数是 ;的绝对值是 . -(-8)的相反数是 ;的相反数的倒数是_____.(2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 . (3) 上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min.(4) 若a、b互为相反数,c、d互为倒数,则____ .(5) 近似数0.4062精确到 位,近似数 5.47×105精确到 位,近似数3.5万精确到 位, 3.4030×105精确到千位是 .【答案】(1); ; ;-8;2 (2)降价5.8元,70.2 元;(3);(4)3;(5)万分;千;千;3.40×1052.(2020春•射洪县月考)如果|x+3|+|y﹣4|=0,求x+2y的值.【思路点拨】根据非负数的性质,可求出x、y的值,然后将x、y的值代入代数式化简计算即可.【答案与解析】解:∵|x+3|+|y﹣4|=0,∴x+3=0,y﹣4=0,解得,x=﹣3,y=4,x+2y=﹣3+4×2=5.【总结升华】本题考查了绝对值的性质和非负数的性质,掌握有限个非负数的和为零,那么每一个加数也必为零是解题的关键.3.在下列两数之间填上适当的不等号: ________.【思路点拨】根据“a-b>0,a-b=0,a-b<0分别得到a>b,a=b,a<b”来比较两数的大小.【答案】<【解析】法一:作差法由于,所以法二:倒数比较法:因为所以【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用.举一反三:【变式】比较大小:(1)________0.001; (2)________-0.68【答案】(1)< (2)>类型二、有理数的运算4.(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|(3)(4)(5)【答案与解析】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=﹣12﹣5﹣14+39=﹣31+39=8(2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|=﹣9÷9﹣6+4=﹣1﹣6+4=﹣3(3)=×60﹣×60﹣×60=10﹣25﹣8=﹣23(4)=﹣×[(﹣)÷(﹣)﹣32]=﹣×[2﹣32]=﹣×[﹣30]=24(5) 【总结升华】有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.举一反三:
【变式】(2014秋•埇桥区校级期中)﹣33×(﹣5)+16÷(﹣2)3﹣|﹣4×5|+(﹣0.625)2.【答案】解:原式=﹣27×(﹣5)+16÷(﹣8)﹣|﹣20|+02=135﹣2﹣20+0=113. 类型三、数学思想在本章中的应用 5.(1)数形结合思想:有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系. A.-a<a<1 B.1<-a<a C.1<-a<a D.a<1<-a (2)分类讨论思想:已知|x|=5,|y|=3.求x-y的值. (3)转化思想:计算:【答案与解析】解:(1)将-a在数轴上标出,如图所示,得到a<1<-a,所以大小关系为:a<1<-a. 所以正确选项为:D. (2)因为| x|=5,所以x为-5或5 因为|y|=3,所以y为3或-3.当x=5,y=3时,x-y=5-3=2 当x=5,y=-3时,x-y=5-(-3)=8 当x=-5,y=3时,x-y=-5-3=-8 当x=-5,y=-3时,x-y=-5-(-3)=-2 故(x-y)的值为±2或±8(3)原式=【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”. 举一反三:
【变式】若a是有理数,|a|-a能不能是负数?为什么?【答案】解:当a>0时,|a|-a=a-a=0; 当a=0时,|a|-a=0-0=0; 当a<0时,|a|-a=-a-a=-2a>0. 所以,对于任何有理数a,|a|-a都不会是负数.类型四、规律探索 6.将1,,,,,,…,按一定规律排列如下: 请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律.【答案】【解析】 认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是,以此类推向前10个,则得到第20行第10个数是.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.