所属成套资源:人教版数学七年级上册同步知识讲解+巩固练习(基础版+提高版)(含答案)
人教版数学七年级上册整式的加减(一)——合并同类项(提高)知识讲解 (含答案)
展开整式的加减(一)——合并同类项(提高) 【学习目标】1.掌握同类项及合并同类项的概念,并能熟练进行合并;2. 掌握同类项的有关应用;3. 体会整体思想即换元的思想的应用.【要点梳理】 要点一、同类项 定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项. 要点诠释: (1)判断几个项是否是同类项有两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.要点诠释:合并同类项的根据是乘法的分配律逆用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中照抄;(2)系数相加(减),字母部分不变,不能把字母的指数也相加(减).【典型例题】类型一、同类项的概念 1. 判别下列各题中的两个项是不是同类项: (1)-4a2b3与5b3a2;(2)与;(3)-8和0;(4)-6a2b3c与8ca2.【答案与解析】 (1)-4a2b3与5b3a2是同类项;(2)不是同类项;(3)-8和0都是常数,是同类项;(4)-6a2c与8ca2是同类项.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同;“两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.此外注意常数项都是同类项.2.是同类项,求出m, n的值.【答案与解析】因为 是同类项, 所以 , 解得:所以【总结升华】概念的灵活运用.举一反三:【变式】(2020•石城县模拟)如果单项式﹣xa+1y3与x2yb是同类项,那么a、b的值分别为( )A. a=2,b=3 B. a=1,b=2 C. a=1,b=3 D. a=2,b=2【答案】C解:根据题意得:a+1=2,b=3,则a=1. 【答案】6类型二、合并同类项 3.合并同类项:;;; (注:将“”或“”看作整体)【思路点拨】同类项中,所含“字母”,可以表示字母,也可以表示多项式,如(4).【答案与解析】 (1)(2) (3)原式=(4)【总结升华】无同类项的项不能遗漏,在每步运算中照抄.举一反三:【变式1】化简:(1) (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b)【答案】原式(2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) =(a-2b)2-2(a-2b)2+4(a-2b)-(a-2b) =(1-2)(a-2b)2+(4-1)(a-2b) =-(a-2b)2+3(a-2b).4. (2020•大丰市一模)若﹣2amb4与5a2bn+7的和是单项式,则m+n= ﹣1 .【思路点拨】两个单项式的和仍是单项式,这说明﹣2amb4与5a2bn+7是同类项. 【答案】-1【解析】解:由﹣2amb4与5a2bn+7是同类项,得,解得.m+n=﹣1,故答案为:﹣1.【总结升华】要善于利用题目中的隐含条件.举一反三:【变式】若与可以合并,则 , .【答案】类型三、化简求值5. 化简求值:(1)当时,求多项式的值.(2)若,求多项式的值.【答案与解析】(1)先合并同类项,再代入求值: 原式= =将代入,得:(2)把当作一个整体,先化简再求值:原式=由可得: 两式相加可得:,所以有代入可得:原式=【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.举一反三: 【变式】.【答案】类型四、综合应用6. 若多项式-2+8x+(b-1)x2+ax3与多项式2x3-7x2-2(c+1)x+3d+7恒等,求ab-cd.【答案与解析】法一:由已知 ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7) ∴ 解得: ∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27.法二:说明:此题的另一个解法为:由已知(a-2)x3+(b+6)x2+[2(c+1)+8]x-(3d+9)≡0. 因为无论x取何值时,此多项式的值恒为零.所以它的各项系数皆为零,即从而解得 解得: 【总结升华】若等式两边恒等,则说明等号两边对应项系数相等;若某式恒为0,则说明各项系数均为0;若某式不含某项,则说明该项的系数为0.举一反三:【变式1】若关于x的多项式-2x2+mx+nx2+5x-1的值与x的值无关,求(x-m)2+n的最小值.【答案】 -2x2+mx+nx2+5x-1=nx2-2x2+mx+5x-1=(n-2)x2+(m+5)x-1∵ 此多项式的值与x的值无关,∴ 解得: 当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2.∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n有最小值为2. 【变式2】若关于的多项式:,化简后是四次三项式,求m+n的值.【答案】分别计算出各项的次数,找出该多项式的最高此项: 因为的次数是,的次数为,的次数为,的次数为,又因为是三项式 ,所以前四项必有两项为同类项,显然是同类项,且合并后为0,所以有 ,.