|试卷下载
搜索
    上传资料 赚现金
    8.3.2 一元一次不等式组的应用及方案题 华东师大版数学七年级下册课时练习(含解析)
    立即下载
    加入资料篮
    8.3.2 一元一次不等式组的应用及方案题 华东师大版数学七年级下册课时练习(含解析)01
    8.3.2 一元一次不等式组的应用及方案题 华东师大版数学七年级下册课时练习(含解析)02
    8.3.2 一元一次不等式组的应用及方案题 华东师大版数学七年级下册课时练习(含解析)03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中华师大版8.3 一元一次不等式组同步测试题

    展开
    这是一份初中华师大版8.3 一元一次不等式组同步测试题,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    8.3.2一元一次不等式组的应用及方案题
    一、选择题(共6小题)
    1.小王网购了一本《好玩的数学》,同学们想知道书的价格,小王让他们猜.喜欢数学的甲同学说:“至少20元.”对数学感觉一般的乙同学说:“至多15元.”讨厌数学的丙同学说:“至多12元.”小王说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为(  )
    A.12<x<15 B.12<x<20 C.15<x<20 D.13<x<19
    2.某天,孟孟与欢欢在讨论攀攀的年龄,欢欢说:“攀攀至多3岁.”而孟孟说:“攀攀的年龄一定大于1岁.”则攀攀年龄的取值范围在数轴上表示正确的是(  )
    A. B.
    C. D.
    3.如图,是甲、乙、丙三人玩跷跷板的示意图(支点在板的中点处),则甲的体重m的取值范围是(  )

    A.0<m<45 B.45≤m<60 C.45<m<60 D.45<m≤60
    4.几个同学相约一起去书店买书,书架上有一本《数学女孩》,小明看到了该书的价格,他让同学们猜一猜价格,甲说:“至多42元.”乙说:“至少50元.”丙说:“至多30元.”小明说:“你们三个人都说错了.”则这本书的价格x(元)所在的范围为(  )
    A.42<x<50 B.30≤x≤50 C.42≤x≤50 D.30<x<42
    5.某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为(  )
    A.24人 B.23人 C.22人 D.不能确定
    6.已知非负数a,b,c满足条件a+b=7,c﹣a=5,设S=a+b+c的最大值为m,最小值为n,则m﹣n的值(  )
    A.5 B.6 C.7 D.8
    二、填空题(共6小题)
    7.在“抗疫”期间,某药店计划一次购进A、B两种型号的口罩共200盒,每盒A型口罩的销售利润为7.5元,每盒B型口罩的销售利润为10元,若要求B型口罩的进货量不超过A型口罩的3倍,且完全售出后利润不少于1870元,则该药店在此次进货中获得的最大利润是    元.
    8.把一些苹果分给几名同学,如果每人分3个,那么余8个;如果前面的每名同学分5个,那么最后一人就分不到3个.这些苹果有    个.
    9.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.则这个中学共选派值勤学生    人.
    10.方方驾驶汽车匀速地从甲地去乙地,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时).且全程速度限定为不超过120千米/小时.若他以80千米/小时的平均速度行驶,则需6小时到达目的地,若方方必须要在5小时内(包括5小时)到达乙地,那么行驶的平均速度v的范围是   .
    11.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了   名护士护理新冠病人.
    12.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空.若旅行团的人数为偶数,求旅行团共有    人.
    三、解答题(共7小题)
    13.为增强学生体质,丰富学生课余活动,学校决定添置一批篮球和足球.甲、乙两家商场以相同的价格出售同种品牌的篮球和足球,已知篮球价格为200元/个,足球价格为150元/个.
    (1)若学校计划用不超过3550元的总费用购买这款篮球和足球共20个,且购买篮球的数量多于购买足球数量的.学校有哪几种购买方案?
    (2)若甲、乙两商场各自推出不同的优惠方案:甲商场累计购物超过500元后,超出500元的部分按90%收费;乙商场累计购物超过2000元后,超出2000元的部分按80%收费.若学校按(1)中的方案购买,学校到哪家商场购买花费少?
    14.某中学为了庆祝“建党一百周年”,计划举行阳光体育运动比赛,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.
    (1)求购买一根跳绳和一个毽子分别需要多少元?
    (2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.
    15.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.
    (1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.
    (2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为整数),求有哪几种购买方案.
    (3)在(2)的条件下,求超市在获得的利润的最大值.
    16.某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.
    (1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.
    (2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.
    17.接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.
    (1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗.
    (2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?
    18.蔬菜大王小明牛年春节前欲将一批蔬菜运往外地销售,若用2辆A型车和1辆B型车载满蔬菜一次可运走10吨,用1辆A型车和2辆B型车载满蔬菜一次可运走11吨.现有蔬菜31吨,计划同时租用A型车x辆,B型车y辆,一次运完,且恰好每辆车都载满蔬菜.根据以上信息,解答下列问题:
    (1)1辆A型车和1辆B型车都载满蔬菜一次可分别运送多少吨?
    (2)请你帮该物流公司设计租车方案;
    (3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.
    19.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买《艾青诗选》和《格列佛游记》两种书共50本.已知购买2本《艾青诗选》和1本《格列佛游记》需100元;购买6本《艾青诗选》与购买7本《格列佛游记》的价格相同.
    (1)求这两种书的单价;
    (2)若购买《艾青诗选》的数量不少于所购买《格列佛游记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?

    8.3.2一元一次不等式组的应用及方案题
    参考答案与试题解析
    一、选择题(共6小题)
    1.小王网购了一本《好玩的数学》,同学们想知道书的价格,小王让他们猜.喜欢数学的甲同学说:“至少20元.”对数学感觉一般的乙同学说:“至多15元.”讨厌数学的丙同学说:“至多12元.”小王说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为(  )
    A.12<x<15 B.12<x<20 C.15<x<20 D.13<x<19
    【解答】解:依题意得:,
    ∴15<x<20.
    故选:C.
    2.某天,孟孟与欢欢在讨论攀攀的年龄,欢欢说:“攀攀至多3岁.”而孟孟说:“攀攀的年龄一定大于1岁.”则攀攀年龄的取值范围在数轴上表示正确的是(  )
    A. B.
    C. D.
    【解答】解:设攀攀年龄为x岁,
    依题意得:,
    即1<x≤3,
    ∴将其表示在数轴上如图所示.
    故选:C.

    3.如图,是甲、乙、丙三人玩跷跷板的示意图(支点在板的中点处),则甲的体重m的取值范围是(  )

    A.0<m<45 B.45≤m<60 C.45<m<60 D.45<m≤60
    【解答】解:∵甲的体重>乙的体重,
    ∴m>45,
    ∵甲的体重<丙的体重,
    ∴m<60.
    ∴45<m<60.
    故选:C.
    4.几个同学相约一起去书店买书,书架上有一本《数学女孩》,小明看到了该书的价格,他让同学们猜一猜价格,甲说:“至多42元.”乙说:“至少50元.”丙说:“至多30元.”小明说:“你们三个人都说错了.”则这本书的价格x(元)所在的范围为(  )
    A.42<x<50 B.30≤x≤50 C.42≤x≤50 D.30<x<42
    【解答】解:由题意可得:,
    ∵三个人都说错了,
    ∴42<x<50,
    故选:A.
    5.某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为(  )
    A.24人 B.23人 C.22人 D.不能确定
    【解答】解:设每组预定的学生为x人,
    由题意可得,,
    解得21<x<22,
    ∵x为正整数,
    ∴x=22,
    故选:C.
    6.已知非负数a,b,c满足条件a+b=7,c﹣a=5,设S=a+b+c的最大值为m,最小值为n,则m﹣n的值(  )
    A.5 B.6 C.7 D.8
    【解答】解:∵a,b,c为非负数;
    ∴S=a+b+c≥0;
    又∵c﹣a=5;
    ∴c=a+5;
    ∴c≥5;
    ∵a+b=7;
    ∴S=a+b+c=7+c;
    又∵c≥5;
    ∴c=5时S最小,即S最小=12,即n=12;
    ∵a+b=7;
    ∴a≤7;
    ∴S=a+b+c=7+c=7+a+5=12+a;
    ∴a=7时S最大,即S最大=19,即m=19;
    ∴m﹣n=19﹣12=7.
    故选:C.
    二、填空题(共6小题)
    7.在“抗疫”期间,某药店计划一次购进A、B两种型号的口罩共200盒,每盒A型口罩的销售利润为7.5元,每盒B型口罩的销售利润为10元,若要求B型口罩的进货量不超过A型口罩的3倍,且完全售出后利润不少于1870元,则该药店在此次进货中获得的最大利润是  1875 元.
    【解答】解:设购进A型口罩x盒,则购进B型口罩(200﹣x)盒,
    依题意得:,
    解得:50≤x≤52,
    又∵x为正整数,
    ∴x可以取50,51,52,
    当x=50时,该药店在此次进货中获得的利润是7.5×50+10×(200﹣50)=1875(元);
    当x=51时,该药店在此次进货中获得的利润是7.5×51+10×(200﹣51)=1872.5(元);
    当x=52时,该药店在此次进货中获得的利润是7.5×52+10×(200﹣52)=1870(元).
    ∵1875>1872.5>1870,
    ∴该药店在此次进货中获得的最大利润是1875元.
    故答案为:1875.
    8.把一些苹果分给几名同学,如果每人分3个,那么余8个;如果前面的每名同学分5个,那么最后一人就分不到3个.这些苹果有  26 个.
    【解答】解:设这些苹果分给x名同学,则这些苹果有(3x+8)个,
    依题意得:,
    解得:5<x<.
    又∵x为正整数,
    ∴x=6,
    ∴3x+8=3×6+8=26.
    故答案为:26.
    9.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.则这个中学共选派值勤学生  158 人.
    【解答】解:设星期天选派同学值勤的交通路口有x个,则这个中学共选派值勤学生(4x+78)人,
    依题意得:,
    解得:<x≤.
    又∵x为正整数,
    ∴x=20,
    ∴4x+78=4×20+78=80+78=158.
    故答案为:158.
    10.方方驾驶汽车匀速地从甲地去乙地,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时).且全程速度限定为不超过120千米/小时.若他以80千米/小时的平均速度行驶,则需6小时到达目的地,若方方必须要在5小时内(包括5小时)到达乙地,那么行驶的平均速度v的范围是 96≤v≤120 .
    【解答】解:依题意得:,
    解得:96≤v≤120.
    故答案为:96≤v≤120.
    11.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了 6 名护士护理新冠病人.
    【解答】解:设医院安排了x名护士,由题意得,
    1<4x+20﹣8(x﹣1)<8,
    解得,5<x<6,
    ∵x为整数,
    ∴x=6.
    故答案为:6.
    12.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空.若旅行团的人数为偶数,求旅行团共有  28 人.
    【解答】解:设旅行团共有x人,
    由题意,得:,
    解得:27<x<30,
    ∵x为偶数,
    ∴x=28.
    即旅行团共有28人.
    故答案为:28.
    三、解答题(共7小题)
    13.为增强学生体质,丰富学生课余活动,学校决定添置一批篮球和足球.甲、乙两家商场以相同的价格出售同种品牌的篮球和足球,已知篮球价格为200元/个,足球价格为150元/个.
    (1)若学校计划用不超过3550元的总费用购买这款篮球和足球共20个,且购买篮球的数量多于购买足球数量的.学校有哪几种购买方案?
    (2)若甲、乙两商场各自推出不同的优惠方案:甲商场累计购物超过500元后,超出500元的部分按90%收费;乙商场累计购物超过2000元后,超出2000元的部分按80%收费.若学校按(1)中的方案购买,学校到哪家商场购买花费少?
    【解答】解:(1)设购买篮球x个,购买足球(20﹣x)个,由题意得,

    解得8<x≤11,
    ∵x取正整数,
    ∴x=9,10,11,
    ∴20﹣x=11,10,9,
    答:一共有3种方案:
    方案一:购买篮球9个,购买足球11个;
    方案二:购买篮球10个,购买足球10个;
    方案三:购买篮球11个,购买足球9个.
    (2)1°当购买篮球9个,购买足球11个时,
    甲商场的费用:500+0.9×(200×9+150×11﹣500)=3155元,
    乙商场的费用:2000+0.8×(200×9+150×11﹣2000)=3160元,
    ∵3155<3160,
    ∴学校到甲商场购买花费少;
    2°当购买篮球10个,购买足球10个时,
    甲商场的费用:500+0.9×(200×10+150×10﹣500)=3200元,
    乙商场的费用:2000+0.8×(200×10+150×10﹣2000)=3200元,
    ∵3200=3200,
    ∴学校到甲商场和乙商场购买花费一样;
    3°当购买篮球11个,购买足球9个时,
    甲商场的费用:500+0.9×(200×11+150×9﹣500)=3245元,
    乙商场的费用:2000+0.8×(200×11+150×9﹣2000)=3240元,
    ∵3245>3240,
    ∴学校到乙商场购买花费少.
    14.某中学为了庆祝“建党一百周年”,计划举行阳光体育运动比赛,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.
    (1)求购买一根跳绳和一个毽子分别需要多少元?
    (2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.
    【解答】解:(1)设购买一根跳绳需要x元,一个毽子需要y元,
    依题意得:,
    解得:.
    答:购买一根跳绳需要6元,一个毽子需要4元.
    (2)设购买m根跳绳,则购买(54﹣m)个毽子,
    依题意得:,
    解得:20<m≤22,
    又∵m为正整数,
    ∴m可以为21,22,
    ∴共有2种购买方案,
    方案1:购买21根跳绳,33个毽子;
    方案2:购买22根跳绳,32个毽子.
    15.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.
    (1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.
    (2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为整数),求有哪几种购买方案.
    (3)在(2)的条件下,求超市在获得的利润的最大值.
    【解答】解:(1)依题意,得:

    解得:.
    答:m的值为10,n的值为14.
    (2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,
    依题意,得:,
    解得:58≤x≤60.
    ∵x为正整数,
    ∴x=58,59,60,
    ∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.
    (3)设超市获得的利润为y元,则y=(16﹣10)x+(18﹣14)(100﹣x)=2x+400.
    ∵k=2>0,
    ∴y随x的增大而增大,
    ∴当x=60时,y取得最大值,最大值为2×60+400=520.
    16.某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.
    (1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.
    (2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.
    【解答】解:(1)由题意得:y=(2000﹣1600)x+(3000﹣2500)(20﹣x)=﹣100x+10000,
    ∴全部售出后该商店获利y与x之间函数表达式为y=﹣100x+10000;
    (2)由题意得:,
    解得12≤x≤15,
    ∵x为正整数,
    ∴x=12、13、14、15,
    共有四种采购方案:
    ①甲型电脑12台,乙型电脑8台,
    ②甲型电脑13台,乙型电脑7台,
    ③甲型电脑14台,乙型电脑6台,
    ④甲型电脑15台,乙型电脑5台,
    ∵y=﹣100x+10000,且﹣100<0,
    ∴y随x的增大而减小,
    ∴当x取最小值时,y有最大值,
    即x=12时,y最大值=﹣100×12+10000=8800,
    ∴采购甲型电脑12台,乙型电脑8台时商店获得最大利润,最大利润是8800元.
    17.接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.
    (1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗.
    (2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?
    【解答】解:(1)设每辆A型车和每辆B型车一次可以分别运输x盒疫苗、y盒疫苗,
    由题意可得,,
    解得,
    答:每辆A型车和每辆B型车一次可以分别运输150盒疫苗、100盒疫苗;
    (2)设A型车a辆,则B型车(12﹣a)辆,
    由题意可得,,
    解得6≤a<9,
    ∵a为正整数,
    ∴a=6,7,8,
    ∴共有三种运输方案,
    方案一:A型车6辆,B型车6辆,
    方案二:A型车7辆,B型车5辆,
    方案三:A型车8辆,B型车4辆,
    ∵A型车一次需费用5000元,B型车一次需费用3000元,计划用两种冷链运输车共12辆运输这批疫苗,
    ∴A型车辆数越少,费用越低,
    ∴方案一所需费用最少,此时的费用为5000×6+3000×6=48000(元),
    答:方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A型车8辆,B型车4辆,其中方案一所需费用最少,最少费用是48000元.
    18.蔬菜大王小明牛年春节前欲将一批蔬菜运往外地销售,若用2辆A型车和1辆B型车载满蔬菜一次可运走10吨,用1辆A型车和2辆B型车载满蔬菜一次可运走11吨.现有蔬菜31吨,计划同时租用A型车x辆,B型车y辆,一次运完,且恰好每辆车都载满蔬菜.根据以上信息,解答下列问题:
    (1)1辆A型车和1辆B型车都载满蔬菜一次可分别运送多少吨?
    (2)请你帮该物流公司设计租车方案;
    (3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.
    【解答】解:(1)设1辆A型车载满蔬菜一次可运送x吨,1辆B型车载满蔬菜一次可运送y吨,
    依题意得:,
    解得:.
    答:1辆A型车载满蔬菜一次可运送3吨,1辆B型车载满蔬菜一次可运送4吨.
    (2)依题意得:3x+4y=31,
    ∴x=.
    又∵x,y均为非负整数,
    ∴或或,
    ∴该物流公司共有3种租车方案,
    方案1:租用9辆A型车,1辆B型车;
    方案2:租用5辆A型车,4辆B型车;
    方案3:租用1辆A型车,7辆B型车.
    (3)方案1所需租车费为100×9+120×1=1020(元);
    方案2所需租车费为100×5+120×4=980(元);
    方案3所需租车费为100×1+120×7=940(元).
    ∵1020>980>940,
    ∴费用最少的租车方案为:租用1辆A型车,7辆B型车,最少租车费为940元.
    19.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买《艾青诗选》和《格列佛游记》两种书共50本.已知购买2本《艾青诗选》和1本《格列佛游记》需100元;购买6本《艾青诗选》与购买7本《格列佛游记》的价格相同.
    (1)求这两种书的单价;
    (2)若购买《艾青诗选》的数量不少于所购买《格列佛游记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?
    【解答】解:(1)设购买《艾青诗选》的单价为x元,《格列佛游记》的单价为y元,
    由题意得:,
    解得,
    答:购买《艾青诗选》的单价为35元,《格列佛游记》的单价为30元;
    (2)设购买《艾青诗选》的数量n本,则购买《格列佛游记》的数量为(50﹣n)本,
    根据题意得,
    解得:16≤n≤20,
    则n可以取17、18、19、20,
    当n=17时,50﹣n=33,共花费17×35+33×30=1585(元);
    当n=18时,50﹣n=32,共花费18×35+32×30=1590(元);
    当n=19时,50﹣n=31,共花费19×35+31×30=1595(元);
    当n=20时,50﹣n=30,共花费20×35+30×30=1600(元);
    所以,共有4种购买方案分别为:
    购买《艾青诗选》和《格列佛游记》的数量分别为17本和33本,
    购买《艾青诗选》和《格列佛游记》的数量分别为18本和32本,
    购买《艾青诗选》和《格列佛游记》的数量分别为19本和31本,
    购买《艾青诗选》和《格列佛游记》的数量分别为20本和30本.
    相关试卷

    数学华师大版第8章 一元一次不等式8.3 一元一次不等式组当堂检测题: 这是一份数学华师大版第8章 一元一次不等式8.3 一元一次不等式组当堂检测题,共9页。试卷主要包含了下列是一元一次不等式组的是,解不等式组等内容,欢迎下载使用。

    数学华师大版3 解一元一次不等式第2课时课时作业: 这是一份数学华师大版3 解一元一次不等式第2课时课时作业,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    华师大版七年级下册1 不等式的解集随堂练习题: 这是一份华师大版七年级下册1 不等式的解集随堂练习题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map