![湘教版8下数学第二章2.1.1《多边形的概念及内角和》课件+教案01](http://www.enxinlong.com/img-preview/2/3/14053609/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![湘教版8下数学第二章2.1.1《多边形的概念及内角和》课件+教案02](http://www.enxinlong.com/img-preview/2/3/14053609/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![湘教版8下数学第二章2.1.1《多边形的概念及内角和》课件+教案03](http://www.enxinlong.com/img-preview/2/3/14053609/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![湘教版8下数学第二章2.1.1《多边形的概念及内角和》课件+教案04](http://www.enxinlong.com/img-preview/2/3/14053609/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![湘教版8下数学第二章2.1.1《多边形的概念及内角和》课件+教案05](http://www.enxinlong.com/img-preview/2/3/14053609/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![湘教版8下数学第二章2.1.1《多边形的概念及内角和》课件+教案06](http://www.enxinlong.com/img-preview/2/3/14053609/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![湘教版8下数学第二章2.1.1《多边形的概念及内角和》课件+教案07](http://www.enxinlong.com/img-preview/2/3/14053609/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![湘教版8下数学第二章2.1.1《多边形的概念及内角和》课件+教案08](http://www.enxinlong.com/img-preview/2/3/14053609/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![湘教版8下数学第二章2.1.1《多边形的概念及内角和》课件+教案01](http://www.enxinlong.com/img-preview/2/3/14053609/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湘教版8下数学第二章2.1.1《多边形的概念及内角和》课件+教案02](http://www.enxinlong.com/img-preview/2/3/14053609/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学湘教版八年级下册2.1 多边形优质ppt课件
展开初中数学湘教版八年级下
《多边形的概念及内角和》教学设计
课题名 | 多边形的概念及内角和 | ||||||||||||||||||||||||||||||
教学目标 | 1.知识与技能: ①理解多边形及正多边形的定义;②掌握多边形的内角和公式. 2.过程与方法:①经历探索多边形内角和公式的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系;②探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力. 3.情感态度和价值观:经历探索多边形内角和的过程,进一步发展学生合情推理意识、主动探究习惯,进一步体会数学与现实生活的紧密联系. | ||||||||||||||||||||||||||||||
教学重点 | 多边形的内角和. | ||||||||||||||||||||||||||||||
教学难点 | 探索多边形的内角和公式过程. | ||||||||||||||||||||||||||||||
教学准备 | 教师准备:制作《多边形的概念及内角和》课件。 学生准备:预习《多边形的概念及内角和》并准备作图工具. | ||||||||||||||||||||||||||||||
教学过程 | 一、创设情境,导入新课 你能从图中找出一些由线段首尾相连组成的图形吗? 多边形概念:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。 【教学说明】让学生认识生活中的多边形形状,感受数学与生活的联系。 二、思考探究,获取新知 问题1 多边形及其有关概念 1、多边形的边:组成多边形的各条线段,叫作多边形的边。 2、多边形的顶点:相邻两条边的公共端点叫作多边形的顶点。 3、多边形的对角线:连接不相邻的两个顶点的线段多边形的对角线。 4、多边形的内角:相邻两边组成的角叫作多边形的内角,简称多边形的角。 §多边形的顶点、内角、边的概念类似于三角形。 【教学说明】让学生与以前学过的三角形相比较,培养学生类比的学习方法. 问题2 多边形的表示方法 多边形的表示方法:边数+顶点 ①边数:n边形; ②顶点:用表示它的顶点的字母来表示,可顺时针方向表示,也可逆时针方向表示。 【教学说明】以实例来讲解多边形的表示方法更具体,学生更易掌握。 问题3 正多边形的认识 1.下边各图形有何特点?
正多边形的概念:在平面内,边相等、角也相等的多边形叫做正多边形。(正多边形都是轴对称图形) 2.思考: 1.一个多边形的边都相等,它的内角一定都相等吗? 2.一个多边形的内角都相等,它的边一定都相等吗? 【教学说明】通过正三边形、正方形、正五边形、正六边形、正八边形等特殊正多边形的探索来识正多边形,掌握正多边形的特点,感受从特殊到一般的数学推理过程和数学思考方法. 问题4 多边形的内角和
答:四边形的对角线把它分成两个三角形,因此四边形的内角和等于这两个三角形的内角和,即1800×2=3600。 【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决. 2.探究:在下列各个多边形中,任取一个顶点,通过该顶点画出所有对角线,并完成下表。
§规律:①n边形的对角线条数:(n-3)条 ②n边形的对角线所分三角形个数:(n-2)个 ③n边形的内角和:(n-2)×180°. 3.动脑筋:你还可以用其他方法探究n边形的内角和公式吗?
【教学说明】通过学生的自主探究,体验多边形内角和的得出过程,从中感受转化思路,即将多边形问题转化为三角形问题来解决.
1).正n边形的每个内角度数: 2).正n边形的内角和怎么求? ①方法一:正n边形的内角和=(n-2)×180° ②方法二:正n边形的内角和=每个内角的度数×边数. 【教学说明】通过学生的自主探究、交流体验正多边形内角和求法,从中感受多途径解题的技巧。 三、典例分析 例1 (1)十边形的内角和是多少度? 解:(1) 十边形的内角和是:(10-2)×1800= 14400. (2)一个多边形的内角和等于1980°,它是几边形? 解:(2)设这个多边形的边数为n,则依题意得: (n-2)×1800= 19800. 解得:n=13. ∴这是一个十三边形. 【教学说明】让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用. 四、运用新知,深化理解 1.(1)正十二边形每个内角是多少度? 解:(1)(12-2)×1800=18000, 18000÷12= 1500. 答:正十二边形每个内角是1500. (2)一个多边形的内角和是18000,它是几边形? 解:(2)设这个多边形的边数为n,则 (n-2)×1800= 18000.解得:n=12. ∴这是一个十二边形.
解:设这个多边形的边数为n,则 解得:n=12. ∴这是一个十二边形. 【教学说明】由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程.对需要帮助的学生及时点拨并加以强化.在完成上述题目后,让学生完成练习册中 五、师生互动,课堂小结 通过本节课的学习,你掌握了哪些知识?还有哪些疑难问题需要与大家共同交流? 【教学说明】引导学生回顾反思,让学生看到自己的进步,激励学生,使学生在今后的学习中不断进步,提高学生的学习热情. | ||||||||||||||||||||||||||||||
布置作业 | 课堂作业:P39 习题2.1 第1(1)、6题(1)。 家作:P39 习题2.1 第5题,并预习P36~38《多边形的外角和》。 | ||||||||||||||||||||||||||||||
板书设计 | |||||||||||||||||||||||||||||||
教学反思 | 本节课从日常生活中的实例引出多边形,并对多边形的相关概念及命名进行解说,然后通过画、看、想、交流、讨论,探究了多边形的内角和及正多边形的内角和的求法。其中多边形的内角和及正多边形的内角和的求法是这节课的教学的重点和难点。在教学中,通过学生的动手操作,加深学生对多边形的内角和的求法的理解,激发学生兴趣,培养学生的分析能力和逻辑推理能力。 |
初中数学冀教版八年级下册22.7 多边形的内角和与外角和完美版ppt课件: 这是一份初中数学冀教版八年级下册22.7 多边形的内角和与外角和完美版ppt课件,文件包含227多边形的内角和与外角和课件ppt、227多边形的内角和与外角和教案doc等2份课件配套教学资源,其中PPT共41页, 欢迎下载使用。
数学八年级下册19.1 多边形内角和精品课件ppt: 这是一份数学八年级下册19.1 多边形内角和精品课件ppt,文件包含191多边形内角和课件ppt、191多边形内角和教案doc、191多边形内角和同步练习doc等3份课件配套教学资源,其中PPT共35页, 欢迎下载使用。
沪科版八年级下册19.1 多边形内角和精品课件ppt: 这是一份沪科版八年级下册19.1 多边形内角和精品课件ppt,共47页。PPT课件主要包含了情景引入,典例精析,多边形的对角线,n-3,n-2,归纳总结,都是360°,多边形的内角和,猜想与证明,运用了整体思想等内容,欢迎下载使用。