人教版中考一轮复习 第13讲动点问题--提高班
展开第13讲 动点问题
知识点1 动点问题中的函数图象
本讲例举了以三角形、四边形、圆为背景的因点运动而产生的函数问题,这些问题的重点在于定性刻画两个变量之间的关系,能够依据题意,在所给出的函数图象中,找准临界点,数形结合,分段思考问题;如果是选择题,综合给出的所有选项,找到异同点,深入分析,快速找到正确选项。
【典例】
例1(2020秋•广饶县期中)如图,在边长为2的正方形ABCD中,对角线AC与BD相交于点O,点P是BD上的一个动点,过点P作EF∥AC,分别交正方形的两条边于点E,F,连接OE,OF,设BP=x,△OEF的面积为y,则能大致反映y与x之间的函数关系的图象为( )
A. B.
C. D.
例2(2020秋•芝罘区期中)如图①,Rt△ABC的边BC与矩形DEFG的边DE都在直线l上,且点C与点D重合,AB=DG,将△ABC沿着射线DE方向移动至点B与点E重合时停止,设△ABC与矩形DEFG重叠部分的面积是y,CD的长度为x,y与x之间的关系图象如图②所示,则矩形DEFG的周长为( )
A.14 B.12 C.10 D.7
例3(2020•浙江自主招生)如图,在直角坐标系中,直线yx+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为 .
例4(2020秋•兰州期末)如图,直线l的解析式为yx+b,它与坐标轴分别交于A、B两点,其中点B坐标为(0,4).
(1)求出A点的坐标;
(2)在第一象限的角平分线上是否存在点Q使得∠QBA=90°?若存在,求点Q的坐标;若不存在,请说明理由.
(3)动点C从y轴上的点(0,10)出发,以每秒1cm的速度向负半轴运动,求出点C运动所有的时间t,使得△ABC为轴对称图形(直接写答案即可)
【随堂练习】
1.(2020•铁东区三模)如图,正方形ABCD中,点E、F、G分别为边AD、CD、BC中点,动点P从E点出发,沿E→D→F方向移动,连接PG,过G作GQ⊥PG交边AB于点Q;连接PQ,点O为PQ中点,连接AO;设BQ为x,△AOQ的面积为y;则y与x之间函数图象大致为( )
A. B.
C. D.
2.(2020•鹿邑县二模)如图,矩形ABCD中,ABBC=4,点P、Q分别是BC、AB上两动点,将△PCD沿着对折得,将沿着DP对折得△PED,将△PBQ沿着PQ对折,使P、E、F三点在一直线上,设BP的长度为x,AQ的长度为y,在点P的移动过程中,y与x的函数图象如图2,则函数图象最低点的纵坐标为( )
A. B. C. D.
3.(2020春•花都区期末)如图①,在矩形OACB中,点A、B分别在x轴、y轴正半轴上,点C在第一象限,OA=8,OB=6.
(1)请直接写出点C的坐标;
(2)如图②,点F在BC上,连接AF,把△ACF沿着AF折叠,点C刚好与线段AB上一点C'重合,求线段CF的长度;
(3)如图③,动点P(x,y)在第一象限,且y=2x﹣6,点D在线段AC上,是否存在直角顶点为P的等腰直角△BDP,若存在,请求出点P的坐标;若不存在,请说明理由.
知识点2 动点与存在性问题
在探究平行四边形的存在性问题时,具体方法如下:
(1)假设结论成立;
(2)探究平行四边形存在问题一般是已知平行四边形的3个顶点,再去求另外一个顶点,具体方法有两种:第一种是:①从给定的3个顶点中任选2个定点确定的线段作为探究平行四边形的边或对角线分别作出平行四边形;②根据题干要求找出符合条件的平行四边形;第二种是:①以给定的3个定点两两组合成3条线段,分别以这3条线段为对角线作出平行四边形;②根据题干要求找出符合条件的平行四边形;
(3)建立关系式,并计算;根据以上分类方法画出所有的符合条件的图形后,可以利用平行四边形的性质进行计算,也可以利用全等三角形、相似三角形或直角三角形的性质进行计算,要具体情况具体分析,有时也可以利用直线的解析式联立方程组,由方程组的解为交点坐标的方法求解.
【典例】
例1(2020春•九龙坡区校级月考)已知抛物线y=ax2+bx+6交x轴于A、B两点(点A在点B的左侧),交y轴于点C,连接AC、BC.且OA:OB:OC=1:2:3.
(1)请求出抛物线解析式;
(2)如图1,点P是直线BC上方抛物线上一动点,是否存在直线OP平分四边形ABPC的面积,若存在,求出点P的坐标;若不存在,请说明理由.
(3)如图2,现将原抛物线沿射线CB方向移动,平移后点A的对应点为点A',点B的对应点为点B'.记BC中点为K,连接B'K、A'K.若∠KA′B'=∠KB'A',请直接写出原抛物线平移的距离.
【典例】
本题是二次函数综合题,主要考查了一次函数的性质、图形的平移、面积的计算等,有一定的综合性,难度适中.
例2(2020秋•阆中市期中)如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.
(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;
(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由;
(3)抛物线的对称轴上有一点Q,使△ABQ是以AB为直角边的直角三角形,求Q点的坐标.
【随堂练习】
1.(2020•东莞市校级一模)已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.
(1)求抛物线和直线L的解析式;
(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L于点N,求MN的最大值;
(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.
2.(2020•赤峰)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,直线yx+2经过B,C两点.
(1)直接写出二次函数的解析式 ;
(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;
(3)过(2)中的点Q作QE∥y轴,交x轴于点E.若点M是抛物线上一个动点,点N是x轴上一个动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.
综合运用
1.(2020秋•海淀区期中)如图,菱形ABCD对角线AC,BD相交于点O,点P,Q分别在线段BO,AO上,且PQ∥AB.以PQ为边作一个菱形,使得它的两条对角线分别在线段AC,BD上,设BP=x,新作菱形的面积为y,则反映y与x之间函数关系的图象大致是
( )
A. B.
C. D.
2.(2020•郑州校级模拟)如图1,点A是⊙O上一定点,圆上一点P从圆上一定点B出发,沿逆时针方向运动到点A,运动时间是x(s),线段AP的长度是y(cm).图2是y随x变化的关系图象,则点P的运动速度是( )
A.1cm/s B.cm/s C.cm/s D.cm/s
3.(2020•三水区校级二模)如图,在矩形ABCD中,AB=6cm,AD=3cm,点E是AB的中点,点P沿E﹣A﹣D﹣C以1cm/s的速度运动,连接CE、PE、PC,设△PCE的面积为ycm2,点P运动的时间为t秒,则y与x的函数图象大致为( )
A. B.
C. D.
4.(2020春•崇川区校级期中)如图①,在矩形ABCD中,动点P从A出发,以恒定的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x.△PAB面积为y,若y与x的函数图象如图②所示,则矩形ABCD的面积为( )
A.36 B.54 C.72 D.81
5.(2020春•林州市期中)如图,正方形ABDE的边长为4cm,点F是对角线AD、BE的交点,△BDC是等腰直角三角形,∠BDC=90°.动点P从点A出发,以每秒1cm的速度沿折线AB→BC→CD运动,到达点D时停止.设点P运动x(秒)时,△AFP的面积为y(cm2),则能够反映y与x之间函数关系的图象大致是( )
A. B.
C. D.
6.(2020•金华模拟)如图,点A(﹣1,0),点P是射线AO上一动点(不与O点重合),过点P作直线y=x的平行线交y轴于C,过点P作x轴的垂线交直线y=x于B,连结AB,AC,BC.
(1)当点P在线段OA上且AP=PC时,AB:BC= .
(2)当△ABC与△OPC相似时,P点的横坐标为 .
7.(2020秋•渝中区校级期中)如图,在平面直角坐标系中,直线y=3x+6与x轴交于点A,与y轴交于点B,点C的坐标为(0,2),点D在x轴上,CD=AB.
(1)点E在CD上,其横坐标为4,点F、G分别是x轴、y轴上的动点,连接EF,将△DEF沿EF翻折得△D′EF,点P是直线BD上的一个动点,当|PA﹣PC|最大时,求PG+GD′的最小值;
(2)将CD绕点D逆时针旋转90°得直线C′D,点M、N分别是直线C′D与直线AB上的动点,当△CMN是以CN为直角边的等腰直角三角形时,直接写出点M的坐标.
8.(2020•烟台模拟)如图,抛物线y=ax2x+c的图象与x轴交于A(﹣3,0),B两点,与y轴交于点C(0,﹣2),连接AC.点P是x轴上的动点.
(1)求抛物线的表达式;
(2)过点P作x轴的垂线,交线段AC于点D,E为y轴上一点,连接AE,BE,当AD=BE时,求AD+AE的最小值;
(3)点Q为抛物线上一动点,是否存在点P,使得以A、C、P、Q为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.
9.(2020•温州模拟)已知,如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A,B.此抛物线与x轴的另一个交点为C.抛物线的顶点为D.
(1)求此抛物线的解析式.
(2)若点M为抛物线上一动点,是否存在点M.使△ACM与△ABC的面积相等?若存在,求点M的坐标;若不存在,请说明理由.