所属成套资源:中考数学优化探究一轮复习精品课件(理数)
中考数学优化探究一轮复习(理数) 第9章 第3节 二项式定理课件PPT
展开
这是一份中考数学优化探究一轮复习(理数) 第9章 第3节 二项式定理课件PPT,共36页。PPT课件主要包含了k+1,答案20,等距离,答案10,答案240等内容,欢迎下载使用。
3.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4的值为_________.解析:令x=1,则a0+a1+a2+a3+a4=0,令x=-1,则a0-a1+a2-a3+a4=16,两式相加除以2得a0+a2+a4=8.答案:8
题型一 二项展开式中的特定项或系数
与二项展开式有关问题的解题策略(1)求展开式中的特定项,可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.(3)对于三项式问题,一般是通过合并、拆分或进行因式分解,转化成二项式定理的形式去求解.或看成几个因式的乘积,再利用组合数公式求解.
题型二 二项式系数的和与各项的系数和问题
[例2] 若(1-x)9=a0+a1x+a2x2+…+a9x9,则|a1|+|a2|+|a3|+…+|a9|=( )A.1 B.513C.512 D.511[解析] 令x=0,得a0=1,令x=-1,得|a1|+|a2|+|a3|+…+|a9|=[1-(-1)]9-1=29-1=511.
赋值法的应用二项式定理给出的是一个恒等式,对于x,y的一切值都成立.因此,可将x,y设定为一些特殊的值.在使用赋值法时,令x,y等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax+b)n,(ax2+bx+c)m(a,b∈R)的式子,求其展开式的各项系数之和,只需令x=1即可.(2)形如(ax+by)n(a,b∈R)的式子,求其展开式各项系数之和,只需令x=y=1即可.
2.若(1+x)(1-2x)8=a0+a1x+…+a9x9,x∈R,则a1·2+a2·22+…+a9·29的值为( )A.29 B.29-1C.39 D.39-1解析:(1+x)(1-2x)8=a0+a1x+a2x2+…+a9x9,令x=0,得a0=1;令x=2,得a0+a1·2+a2·22+…+a9·29=39,所以a1·2+a2·22+…+a9·29=39-1.
二项式定理应用中的核心素养
数学运算——几个多项式的展开式问题1.几个多项式的和的展开式问题[例1] (2020·高考浙江卷)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=_________;a1+a3+a5=_________.
当x=1时,(1+2)5=a0+a1+a2+a3+a4+a5=35=243,①当x=-1时,(1-2)5=a0-a1+a2-a3+a4-a5=-1.②①-②得,2(a1+a3+a5)=243-(-1)=244,可得a1+a3+a5=122.[答案] 80 122
对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项公式,从每一个多项式中分别得到特定的项,再求和即可.
求解形如(a+b)m(c+d)n的展开式问题的思路(1)若m,n中有一个比较小,可考虑把它展开,如(a+b)2·(c+d)n=(a2+2ab+b2)(c+d)n,然后分别求解.(2)观察(a+b)(c+d)是否可以合并,如(1+x)5·(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x2)5(1-x)2.(3)分别得到(a+b)m,(c+d)n的通项,综合考虑.
3.三项展开式的特定项问题[例3] (x2+x+y)5的展开式中x5y2的系数为( )A.10 B.20 C.30 D.60
三项展开式中的特定项(系数)问题的处理方法(1)通常将三项式转化为二项式积的形式,然后利用二项展开式中的特定项(系数)问题的处理方法求解.(2)将其中某两项看成一个整体,直接利用二项式定理展开,然后再分类考虑特定项产生的所有可能情形.
2.(x-y+2)6的展开式中y4的系数为( )A.40 B.60C.-40 D.-60解析:法一:因为(x-y+2)6=[(x+2)-y]6,所以展开式中含y4的项为C(x+2)2(-y)4=15x2y4+60xy4+60y4,所以展开式中y4的系数为60.
相关课件
这是一份中考数学优化探究一轮复习(理数) 第5章 第4节 数列求和课件PPT,共40页。PPT课件主要包含了na1等内容,欢迎下载使用。
这是一份中考数学优化探究一轮复习(理数) 第10章 第3节 用样本估计总体课件PPT,共47页。PPT课件主要包含了最大值,最小值,频率分布表,频率分布直方图,所分的组数,从小到大的等内容,欢迎下载使用。
这是一份中考数学优化探究一轮复习(理数) 第10章 第2节 随机抽样课件PPT,共37页。PPT课件主要包含了不放回抽取,抽签法,随机数法,互不交叉,差异明显,分段间隔k,简单随机抽样,l+k,l+2k,答案3等内容,欢迎下载使用。