|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题含答案
    立即下载
    加入资料篮
    广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题含答案01
    广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题含答案02
    广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题含答案03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题含答案

    展开
    这是一份广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题含答案,共12页。试卷主要包含了单选题,多选题,解答题等内容,欢迎下载使用。

    一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 命题“,”的否定是()
    A. ,B. ,
    C. ,D. ,
    2. 设,则“”是“”的( ).
    A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件
    3. 函数的零点所在的区间为()
    A. B. C. D.
    4.若,,向量与向量的夹角为150°,则向量在向量上的投影向量为( )
    A.B.C.D.
    5. 设,,则()
    A. 且B. 且
    C. 且D. 且
    6. 要得到函数的图象,只需将函数的图象进行如下变换得到()
    A.向左平移个单位B. 向右平移个单位C. 向右平移个单位D. 向左平移个单位
    7.已知,是方程的两根,且,,则的值为( )
    A.B.C.或D.或
    8. 若定义上的函数满足:对任意有若的最大值和最小值分别为,则的值为()
    A. 2022B. 2018C. 4036D. 4044
    二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
    9.在中,为中点,且,则( )
    A.B. C.D.
    10.已知函数,则( )
    A.的最大值为B.直线是图象的一条对称轴
    C.在区间上单调递减D.的图象关于点对称
    11. 若,则下列关系式中一定成立的是( )
    A. B. ()
    C. (是第一象限角)D.
    12. 已知函数,若方程有四个不同的根,且,则下列结论正确的是()
    A. B.
    C. D.
    填空题:本题共4小题,每小题5分,共20分.
    13.已知向量,满足,,,则______.
    14. 请写出一个函数,使它同时满足下列条件:(1)的最小正周期是4;(2)的最大值为2.____________.
    15. 若是定义在R上的奇函数,当时,(为常数),则当时,_________.
    16. 木雕是我国古建筑雕刻中很重要一种艺术形式,传统木雕精致细腻、气韵生动、极富书卷气.如图是一扇环形木雕,可视为扇形OCD截去同心扇形OAB所得部分.已知,,,则该扇环形木雕的面积为________.
    四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
    17.(本题满分10分)
    已知集合
    求集合 (2) 若,求实数的取值范围.
    (本题满分12分)
    在平面直角坐标系中,是坐标原点,角的终边与单位圆的交点坐标为,射线绕点按逆时针方向旋转弧度后交单位圆于点,点的纵坐标关于的函数为.(1)求函数的解析式,并求的值;
    (2)若,,求的值.
    19.(本题满分12分)
    函数
    (1)请用五点作图法画出函数在上的图象(先列表,再画图)
    (2)设,,当时,试研究函数的零点的情况.
    20.(本题满分12分)
    2020年我国面对前所未知,突如其来,来势汹汹的新冠肺炎疫情,中央出台了一系列助力复工复产好政策.城市快递行业运输能力迅速得到恢复,市民的网络购物也越来越便利.根据大数据统计,某条快递线路运行时,发车时间间隔t(单位:分钟)满足:,,平均每趟快递车辆的载件个数(单位:个)与发车时间间隔t近似地满足,其中.
    (1)若平均每趟快递车辆的载件个数不超过1600个,试求发车时间间隔t的值;
    (2)若平均每趟快递车辆每分钟的净收益(单位:元),问当发车时间间隔t为多少时,平均每趟快递车辆每分钟的净收益最大?并求出最大净收益(结果取整数).
    21 .(本题满分12分)
    已知函数是定义域上的奇函数,且满足
    判断函数在区间上的单调性,并用定义证明
    已知,且,若,证明:
    22. (本题满分12分)
    若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则称函数具有性质.
    (1)判断函数是否具有性质,并说明理由;
    (2)若函数的定义域为且且具有性质,求的值;
    (3)已知,函数的定义域为且具有性质,若存在实数,使得对任意的,不等式都成立,求实数的取值范围.
    东华高级中学 东华松山湖高级中学
    2022—2023学年第二学期高一2月考数学答案
    一、选择题
    填空题13.; 14.(答案不唯一) 15. ; 16.
    三、解答题
    17.解:(1),4分
    (2)由题意,若,则,5分
    ①时,,解得; 6分
    ②时,,…………………… 8分 解得;…………………………………………………9分
    综上,的取值范围为.10分
    18.解:(1)因为,且,所以,2分
    由此得4分
    .5分
    (2)由知,即7分
    由于,得,与此同时,所以
    由平方关系解得:,9分
    12分
    19、(1)2分
    按五个关键点列表:
    描点并将它们用光滑的曲线连接起来如图1:
    7分
    因为,
    所以的零点个数等价于与图象交点的个数,8分
    设,,则9分
    当,即时,有2个零点;
    当,即时,有1个零点;
    当,即时,有0个零点. 12分
    20、解:(1)当时,,不满足题意,舍去.1分
    当时,,即.3分
    解得(舍)或.4分
    ∵且,∴.5分
    所以发车时间间隔为5分钟.6分
    (2)由题意可得.8分
    当时,(元),9分
    当且仅当,即时,等号成立,10分
    当时,单调递减,时,(元)11分
    所以发车时间间隔为6分钟时,净收益最大为140(元).12分
    21.解:(1)由为奇函数,可得;1分
    又,得;2分
    所以.
    在上单调递增,理由如下:3分
    ,且,则4分
    因为,所以,,,
    所以,,在上单调递增 6分
    (2)证法一:由题意,,则有8分
    因为,所以,即,10分
    所以,得证.12 分
    证法二:由(1)知,在上单调递增,同理可证在上单调递减.
    因为,,
    所以,,所以8分
    要证,即证,
    即证,即证,9分
    代入解析式得,即证
    化简整理得,即证,10分
    因为,显然成立,11分
    所以原不等式得证,所以. 12 分
    解:(1)对于函数的定义域内任意的,
    取,则,1分
    结合的图象可知对内任意的,是唯一存在的,2分
    所以函数具有性质.
    (2)因为,且,所以在上是增函数,3分
    又函数具有性质,所以,即,4分
    因为,所以且,又,
    所以,解得,所以.5分
    (3)因为,所以,且在定义域上单调递增,
    又因为,在上单调递增,
    所以在上单调递增,6分
    又因为具有性质,
    从而,即,所以,
    解得或(舍去),7分
    因为存在实数,使得对任意的,不等式都成立,
    所以,8分
    因为在上单调递增,所以
    即对任意的恒成立.9分
    所以或,11分
    解得或, 综上可得实数的取值范围是………………12分1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    D
    A
    C
    D
    B
    A
    B
    D
    BD
    ABC
    BC
    BCD
    0
    0
    1
    0
    -1
    0
    0
    3
    0
    1
    0
    相关试卷

    2023-2024学年广东省东莞市东华高级中学、东华松山湖高级中学高一上学期12月月考数学试题(含解析): 这是一份2023-2024学年广东省东莞市东华高级中学、东华松山湖高级中学高一上学期12月月考数学试题(含解析),共21页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    【期中真题】广东省东莞市东华高级中学2022-2023学年高一上学期期中数学试题.zip: 这是一份【期中真题】广东省东莞市东华高级中学2022-2023学年高一上学期期中数学试题.zip,文件包含期中真题广东省东莞市东华高级中学2022-2023学年高一上学期期中数学试题原卷版docx、期中真题广东省东莞市东华高级中学2022-2023学年高一上学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    广东省东莞市东华高级中学、东华松山湖高级中学2023-2024学年高一上学期10月月考数学试题: 这是一份广东省东莞市东华高级中学、东华松山湖高级中学2023-2024学年高一上学期10月月考数学试题,共9页。试卷主要包含了命题“”的否定为,不等式的解集为,定义在上的函数满足,已知集合,则实数的值可以是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map