初中数学4 角平分线随堂练习题
展开
这是一份初中数学4 角平分线随堂练习题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题
1.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是( )
A.PQ>6 B.PQ≥6 C.PQ<6 D.PQ≤6
2.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )
A.10 B.7 C.5 D.4
3.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
A.3 B.4 C.6 D.5
4.如图,在Rt△ABC中,∠C=90°,以顶点 A为圆心,适当长为半径画弧,分别交边AC,AB于点M,N,再分别以M,N为圆心,大于eq \f(1,2)MN长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积为( )
A.15 B.30 C.45 D.60
5.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是( )
A.∠C=∠ABC B.BA=BG C.AE=CE D.AF=FD
6.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是( )
A.7 B.6 C.5 D.4
7.到三角形三边的距离相等的点是( )
A.三角形三条高的交点
B.三角形三条中线的交点
C.三角形三条角平分线的交点
D.不存在这个点
8.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以M、N为圆心,大于eq \f(1,2)MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b-1),则a和b的数量关系为( )
A.6a-2b=1 B.6a+2b=1 C.6a-b=1 D.6a+b=1
9.如图,两条笔直的公路l1、l2相交于点O,公路的旁边建三个加工厂A、B、D,已知AB=AD=5.2km,CB=CD=5km,村庄C到公路l1的距离为4km,则C村到公路l2的距离是( )
A.3km B.4km C.5km
10.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )
A.AC,BC两边高线的交点处
B.AC,BC两边中线的交点处
C.AC,BC两边垂直平分线的交点处
D.∠A,∠B两内角平分线的交点处
11.如图,已知AD∥BC,AP平分∠DAB,BP平分∠ABC,点P恰好在CD上,则PD与PC的大小关系是( )
A.PD>PC B.PD=PC C.PD<PC D.无法判断
12.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=( )
A. 6 B. 3 C. 2 D. 1.5
二、填空题
13.如图,已知OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA=2,则PQ的最小值为 ,理论根据为 .
14.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为 .
15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 对全等三角形.
16.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE= .
17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是 .
18.如图,DE⊥AB于E,DF⊥A于F,若BD=CD,BE=CF.
则下列结论:
①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是 .
三、解答题
19.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.
求证:(1)△BED≌△CFD;
(2)AD平分∠BAC.
20.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于eq \f(1,2)GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.
(1)求证:AB=AE;
(2)若∠A=100°,求∠EBC的度数.
21.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.
22.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.
求证:∠A+∠C=180°.
23.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.
24.如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.
(1)求证:∠EFA=90°﹣eq \f(1,2)∠B;
(2)若∠B=60°,求证:EF=DF.
答案
1.B.
2.C
3.A
4.B.
5.B
6.D
7.C.
8.B
9.B
10.C
11.B
12.D.
13.答案为:2,角平分线上的点到角两边的距离相等.
14.答案为:3cm.
15.答案为:3
16.答案为:3.
17.答案为:36.
18.答案为:①②④;
19.证明;(1)∵D是BC的中点,
∴BD=CD,
∵DE⊥AB,DF⊥AC,
在Rt△BED和Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
(2)∵Rt△BED≌Rt△CFD,
∴∠B=∠C,
∴AB=AC,
又∵D为BC的中点,
∴AD平分∠BAC..
20.解:(1)∵AD∥BC,
∴∠AEB=∠EBC.
由BE是∠ABC的角平分线,
∴∠EBC=∠ABE,
∴∠AEB=∠ABE,
∴AB=AE;
(2)由∠A=100°,∠ABE=∠AEB,
得∠ABE=∠AEB=40°.
由AD∥BC,得∠EBC=∠AEB=40°.
21.解: 利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.
∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,
∵S△ABC=S△ABD+S△ACD=eq \f(1,2)AB×DE+eq \f(1,2)AC×DF
∴S△ABC=eq \f(1,2)(AB+AC)×DE
即eq \f(1,2)×(16+12)×DE=28,
故DE=2(cm).
22.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,
∵BD平分∠ABC,
∴DE=DF,∠DEC=∠F=90°,
在RtCDE和Rt△ADF中,
,
∴Rt△CDE≌Rt△ADF(HL),
∴∠FAD=∠C,
∴∠BAD+∠C=∠BAD+∠FAD=180°.
23.证明:如图,连接PB,PC,
∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,
∴PM=PN,∠PMC=∠PNB=90°,
∵P在BC的垂直平分线上,
∴PC=PB,
在Rt△PMC和Rt△PNB中,
,
∴Rt△PMC≌Rt△PNB(HL),
∴BN=CM.
24.证明:(1)∵∠BAC+∠BCA=180°﹣∠B,
又∵AD、CE分别是∠BAC、∠BCA的平分线,
∴∠FAC=eq \f(1,2)∠BAC,∠FCA=eq \f(1,2)∠BCA,
∴∠FAC+∠FCA=eq \f(1,2)×(180°﹣∠B)=90°﹣eq \f(1,2)∠B,
∵∠EFA=∠FAC+∠FCA,
∴∠EFA=90°﹣eq \f(1,2)∠B.
(2)如图,过点F作FG⊥BC于G,作FH⊥AB于H,作FM⊥AC于M.
∵AD、CE分别是∠BAC、∠BCA的平分线,
∴FG=FH=FM,
∵∠EFH+∠DFH=120°,
∠DFG+∠DFH=360°﹣90°×2﹣60°=120°,
∴∠EFH=∠DFG,
在△EFH和△DFG中,
,
∴△EFH≌△DFG(AAS),
∴EF=DF.
相关试卷
这是一份初中数学北师大版八年级下册4 角平分线一课一练,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版八年级下册第一章 三角形的证明4 角平分线一课一练,共9页。试卷主要包含了4《角平分线》等内容,欢迎下载使用。
这是一份初中数学北师大版八年级下册第一章 三角形的证明4 角平分线精品练习,共9页。试卷主要包含了4《角平分线》等内容,欢迎下载使用。