所属成套资源:(2018-2022)高考数学真题按知识点分类汇编【30份】
21-平面解析几何(圆锥曲线之椭圆)-五年(2018-2022)高考数学真题按知识点分类汇编
展开
这是一份21-平面解析几何(圆锥曲线之椭圆)-五年(2018-2022)高考数学真题按知识点分类汇编,共46页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。
一、单选题
1.(2022·全国·统考高考真题)椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为( )
A.B.C.D.
2.(2022·全国·统考高考真题)已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为( )
A.B.C.D.
3.(2021·全国·统考高考真题)设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
A.B.C.D.
4.(2021·全国·统考高考真题)已知,是椭圆:的两个焦点,点在上,则的最大值为( )
A.13B.12C.9D.6
5.(2020·山东·统考高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( )
A.3B.6C.8D.12
6.(2019·全国·高考真题)已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为
A.B.C.D.
7.(2018·全国·高考真题)已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为
A.B.C.D.
8.(2018·全国·高考真题)已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为
A.B.C.D.
9.(2018·全国·高考真题)已知椭圆:的一个焦点为,则的离心率为
A.B.C.D.
10.(2018·全国·专题练习)(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为
A.B.
C.D.
11.(2019·北京·高考真题)已知椭圆(a>b>0)的离心率为,则
A.a2=2b2B.3a2=4b2C.a=2bD.3a=4b
二、多选题
12.(2020·海南·高考真题)已知曲线.( )
A.若m>n>0,则C是椭圆,其焦点在y轴上
B.若m=n>0,则C是圆,其半径为
C.若mn0,则C是两条直线
三、填空题
13.(2022·全国·统考高考真题)已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.
14.(2019·全国·统考高考真题)设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________.
四、解答题
15.(2022·全国·统考高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
16.(2022·北京·统考高考真题)已知椭圆:的一个顶点为,焦距为.
(1)求椭圆E的方程;
(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.
17.(2022·天津·统考高考真题)椭圆的右焦点为F、右顶点为A,上顶点为B,且满足.
(1)求椭圆的离心率;
(2)直线l与椭圆有唯一公共点M,与y轴相交于N(N异于M).记O为坐标原点,若,且的面积为,求椭圆的标准方程.
18.(2021·北京·统考高考真题)已知椭圆一个顶 点,以椭圆的四个顶点为顶点的四边形面积为.
(1)求椭圆E的方程;
(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.
19.(2021·全国·统考高考真题)已知椭圆C的方程为,右焦点为,且离心率为.
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.
20.(2021·天津·统考高考真题)已知椭圆的右焦点为,上顶点为,离心率为,且.
(1)求椭圆的方程;
(2)直线与椭圆有唯一的公共点,与轴的正半轴交于点,过与垂直的直线交轴于点.若,求直线的方程.
21.(2020·全国·统考高考真题)已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;
(2)若点在上,点在直线上,且,,求的面积.
22.(2020·山东·统考高考真题)已知椭圆C:的离心率为,且过点.
(1)求的方程:
(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
23.(2020·全国·统考高考真题)已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;
(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
24.(2020·海南·高考真题)已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,
(1)求C的方程;
(2)点N为椭圆上任意一点,求△AMN的面积的最大值.
25.(2020·全国·统考高考真题)已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;
(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.
26.(2019·全国·高考真题)已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明:是直角三角形;
(ii)求面积的最大值.
27.(2019·全国·高考真题)已知是椭圆的两个焦点,P为C上一点,O为坐标原点.
(1)若为等边三角形,求C的离心率;
(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.
28.(2019·北京·高考真题)已知椭圆的右焦点为,且经过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.
29.(2019·天津·高考真题)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
30.(2018·天津·高考真题)设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.
31.(2018·天津·高考真题)设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.
(I)求椭圆的方程;
(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.
32.(2018·北京·高考真题)已知椭圆的离心率为,焦距为.斜率为的直线与椭圆有两个不同的交点、.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,求的最大值;
(Ⅲ)设,直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.若、和点 共线,求.
五、双空题
33.(2021·浙江·统考高考真题)已知椭圆,焦点,,若过的直线和圆相切,与椭圆在第一象限交于点P,且轴,则该直线的斜率是___________,椭圆的离心率是___________.
参考答案:
1.A
【分析】设,则,根据斜率公式结合题意可得,再根据,将用表示,整理,再结合离心率公式即可得解.
【详解】[方法一]:设而不求
设,则
则由得:,
由,得,
所以,即,
所以椭圆的离心率,故选A.
[方法二]:第三定义
设右端点为B,连接PB,由椭圆的对称性知:
故,
由椭圆第三定义得:,
故
所以椭圆的离心率,故选A.
2.B
【分析】根据离心率及,解得关于的等量关系式,即可得解.
【详解】解:因为离心率,解得,,
分别为C的左右顶点,则,
B为上顶点,所以.
所以,因为
所以,将代入,解得,
故椭圆的方程为.
故选:B.
3.C
【分析】设,由,根据两点间的距离公式表示出 ,分类讨论求出的最大值,再构建齐次不等式,解出即可.
【详解】设,由,因为 ,,所以
,
因为,当,即 时,,即 ,符合题意,由可得,即 ;
当,即时, ,即,化简得, ,显然该不等式不成立.
故选:C.
【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.
4.C
【分析】本题通过利用椭圆定义得到,借助基本不等式即可得到答案.
【详解】由题,,则,
所以(当且仅当时,等号成立).
故选:C.
【点睛】
5.B
【分析】根据椭圆中的关系即可求解.
【详解】椭圆的长轴长为10,焦距为8,
所以,,可得,,
所以,可得,
所以该椭圆的短轴长,
故选:B.
6.B
【分析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.
【详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.
所求椭圆方程为,故选B.
法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B.
【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.
7.D
【详解】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.
详解:因为为等腰三角形,,所以PF2=F1F2=2c,
由斜率为得,,
由正弦定理得,
所以,故选D.
点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.
8.D
【详解】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.
详解:在中,
设,则,
又由椭圆定义可知
则离心率,
故选D.
点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.
9.C
【详解】分析:首先根据题中所给的条件椭圆的一个焦点为,从而求得,再根据题中所给的方程中系数,可以得到,利用椭圆中对应的关系,求得,最后利用椭圆离心率的公式求得结果.
详解:根据题意,可知,因为,
所以,即,
所以椭圆的离心率为,故选C.
点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中的关系求得结果.
10.A
【详解】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,
直线与圆相切,所以圆心到直线的距离等于半径,即,
整理可得,即即,
从而,则椭圆的离心率,
故选A.
【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.
11.B
【分析】由题意利用离心率的定义和的关系可得满足题意的等式.
【详解】椭圆的离心率,化简得,
故选B.
【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.
12.ACD
【分析】结合选项进行逐项分析求解,时表示椭圆,时表示圆,时表示双曲线,时表示两条直线.
【详解】对于A,若,则可化为,
因为,所以,
即曲线表示焦点在轴上的椭圆,故A正确;
对于B,若,则可化为,
此时曲线表示圆心在原点,半径为的圆,故B不正确;
对于C,若,则可化为,
此时曲线表示双曲线,
由可得,故C正确;
对于D,若,则可化为,
,此时曲线表示平行于轴的两条直线,故D正确;
故选:ACD.
【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.
13.13
【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.
【详解】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,
判别式,
∴,
∴ , 得,
∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.
故答案为:13.
14.
【分析】根据椭圆的定义分别求出,设出的坐标,结合三角形面积可求出的坐标.
【详解】由已知可得,
又为上一点且在第一象限,为等腰三角形,
.∴.
设点的坐标为,则,
又,解得,
,解得(舍去),
的坐标为.
【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.
15.(1)
(2)
【分析】(1)将给定点代入设出的方程求解即可;
(2)设出直线方程,与椭圆C的方程联立,分情况讨论斜率是否存在,即可得解.
【详解】(1)解:设椭圆E的方程为,过,
则,解得,,
所以椭圆E的方程为:.
(2),所以,
①若过点的直线斜率不存在,直线.代入,
可得,,代入AB方程,可得
,由得到.求得HN方程:
,过点.
②若过点的直线斜率存在,设.
联立得,
可得,,
且
联立可得
可求得此时,
将,代入整理得,
将代入,得
显然成立,
综上,可得直线HN过定点
【点睛】求定点、定值问题常见的方法有两种:
①从特殊入手,求出定值,再证明这个值与变量无关;
②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
16.(1)
(2)
【分析】(1)依题意可得,即可求出,从而求出椭圆方程;
(2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直线、的方程,表示出、,根据得到方程,解得即可;
【详解】(1)解:依题意可得,,又,
所以,所以椭圆方程为;
(2)解:依题意过点的直线为,设、,不妨令,
由,消去整理得,
所以,解得,
所以,,
直线的方程为,令,解得,
直线的方程为,令,解得,
所以
,
所以,
即
即
即
整理得,解得
17.(1)
(2)
【分析】(1)根据已知条件可得出关于、的等量关系,由此可求得该椭圆的离心率的值;
(2)由(1)可知椭圆的方程为,设直线的方程为,将直线的方程与椭圆方程联立,由可得出,求出点的坐标,利用三角形的面积公式以及已知条件可求得的值,即可得出椭圆的方程.
【详解】(1)解:,
离心率为.
(2)解:由(1)可知椭圆的方程为,
易知直线的斜率存在,设直线的方程为,
联立得,
由,①
,,
由可得,②
由可得,③
联立①②③可得,,,故椭圆的标准方程为.
18.(1);(2).
【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,从而可求椭圆的标准方程.
(2)设,求出直线的方程后可得的横坐标,从而可得,联立直线的方程和椭圆的方程,结合韦达定理化简,从而可求的范围,注意判别式的要求.
【详解】(1)因为椭圆过,故,
因为四个顶点围成的四边形的面积为,故,即,
故椭圆的标准方程为:.
(2)
设,
因为直线的斜率存在,故,
故直线,令,则,同理.
直线,由可得,
故,解得或.
又,故,所以
又
故即,
综上,或.
19.(1);(2)证明见解析.
【分析】(1)由离心率公式可得,进而可得,即可得解;
(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证;
充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合弦长公式可得,进而可得,即可得解.
【详解】(1)由题意,椭圆半焦距且,所以,
又,所以椭圆方程为;
(2)由(1)得,曲线为,
当直线的斜率不存在时,直线,不合题意;
当直线的斜率存在时,设,
必要性:
若M,N,F三点共线,可设直线即,
由直线与曲线相切可得,解得,
联立可得,所以,
所以,
所以必要性成立;
充分性:设直线即,
由直线与曲线相切可得,所以,
联立可得,
所以,
所以
,
化简得,所以,
所以或,所以直线或,
所以直线过点,M,N,F三点共线,充分性成立;
所以M,N,F三点共线的充要条件是.
【点睛】关键点点睛:
解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.
20.(1);(2).
【分析】(1)求出的值,结合的值可得出的值,进而可得出椭圆的方程;
(2)设点,分析出直线的方程为,求出点的坐标,根据可得出,求出、的值,即可得出直线的方程.
【详解】(1)易知点、,故,
因为椭圆的离心率为,故,,
因此,椭圆的方程为;
(2)设点为椭圆上一点,
先证明直线的方程为,
联立,消去并整理得,,
因此,椭圆在点处的切线方程为.
在直线的方程中,令,可得,由题意可知,即点,
直线的斜率为,所以,直线的方程为,
在直线的方程中,令,可得,即点,
因为,则,即,整理可得,
所以,,因为,,故,,
所以,直线的方程为,即.
【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线:
(1)设切线方程为与椭圆方程联立,由进行求解;
(2)椭圆在其上一点的切线方程为,再应用此方程时,首先应证明直线与椭圆相切.
21.(1);(2).
【分析】(1)因为,可得,,根据离心率公式,结合已知,即可求得答案;
(2)方法一:过点作轴垂线,垂足为,设与轴交点为,可得 ,可求得点坐标,从而求出直线的直线方程,根据点到直线距离公式和两点距离公式,即可求得的面积.
【详解】(1),,
根据离心率,解得或(舍),
的方程为:,即.
(2)[方法一]:通性通法
不妨设,在x轴上方,过点作轴垂线,垂足为,设直线与轴交点为
根据题意画出图形,如图
,, ,
又, ,
,根据三角形全等条件“”,可得:,
,,,
设点为,可得点纵坐标为,将其代入,
可得:,解得:或,点为或,
①当点为时,故,
,,可得:点为,
画出图象,如图
, ,可求得直线的直线方程为:,
根据点到直线距离公式可得到直线的距离为,
根据两点间距离公式可得:,面积为:;
②当点为时,故,,,可得:点为,画出图象,如图
, ,可求得直线的直线方程为:,
根据点到直线距离公式可得到直线的距离为,
根据两点间距离公式可得:,
面积为: ,综上所述,面积为:.
[方法二]【最优解】:
由对称性,不妨设P,Q在x轴上方,过P作轴,垂足为E.设,由题知,.
故,
①因为,如图,所以,.
②因为,如图,所以.
综上有
[方法三]:
由已知可得,直线的斜率一定存在,设直线的方程为,由对称性可设,联立方程消去y得,
由韦达定理得,所以,
将其代入直线的方程得,所以,
则.
因为,则直线的方程为,
则.
因为,所,,
即,故或,即或.
当时,点P,Q的坐标分别为,
直线的方程为,点A到直线的距离为,
故的面积为.
当时,点P,Q的坐标分别为,
直线的方程为,点到直线的距离为,
故的面积为.
综上所述,的面积为.
[方法四]:
由(1)知椭圆的方程为,.
不妨设在x轴上方,如图.
设直线.
因为,所以.
由点P在椭圆上得,所以.
由点P在直线上得,所以.所以,化简得.
所以,即.
所以,点Q到直线的距离.
又.
故.即的面积为.
[方法五]:
由对称性,不妨设P,Q在x轴上方,过P作轴,垂足为C,设,
由题知,所以.
(1).
则.
(其中).
(2).
同理,.
(其中)
综上,的面积为.
【整体点评】(2)方法一:根据平面几何知识可求得点的坐标,从而得出点的坐标以及直线的方程,再根据距离公式即可求出三角形的面积,是通性通法;方法二:同方法一,最后通过面积分割法求的面积,计算上有简化,是本题的最优解;方法三:通过设直线的方程与椭圆的方程联立,求出点的坐标,再根据题目等量关系求出的值,从而得出点的坐标以及直线的方程,最后根据距离公式即可求出三角形的面积,思想简单,但运算较繁琐;方法四:与法三相似,设直线的方程,通过平面知识求出点的坐标,表示出点,再根据距离公式即可求出三角形的面积;方法五:同法一,只是在三角形面积公式的选择上,利用三角形面积的正弦形式结合平面向量的数量积算出.
22.(1);(2)详见解析.
【分析】(1)由题意得到关于的方程组,求解方程组即可确定椭圆方程.
(2)方法一:设出点,的坐标,在斜率存在时设方程为, 联立直线方程与椭圆方程,根据已知条件,已得到的关系,进而得直线恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点的位置.
【详解】(1)由题意可得:,解得:,
故椭圆方程为:.
(2)[方法一]:通性通法
设点,
若直线斜率存在时,设直线的方程为:,
代入椭圆方程消去并整理得:,
可得,,
因为,所以,即,
根据,代入整理可得:
,
所以,
整理化简得,
因为不在直线上,所以,
故,于是的方程为,
所以直线过定点直线过定点.
当直线的斜率不存在时,可得,
由得:,
得,结合可得:,
解得:或(舍).
此时直线过点.
令为的中点,即,
若与不重合,则由题设知是的斜边,故,
若与重合,则,故存在点,使得为定值.
[方法二]【最优解】:平移坐标系
将原坐标系平移,原来的O点平移至点A处,则在新的坐标系下椭圆的方程为,设直线的方程为.将直线方程与椭圆方程联立得,即,化简得,即.
设,因为则,即.
代入直线方程中得.则在新坐标系下直线过定点,则在原坐标系下直线过定点.
又,D在以为直径的圆上.的中点即为圆心Q.经检验,直线垂直于x轴时也成立.
故存在,使得.
[方法三]:建立曲线系
A点处的切线方程为,即.设直线的方程为,直线的方程为,直线的方程为.由题意得.
则过A,M,N三点的二次曲线系方程用椭圆及直线可表示为(其中为系数).
用直线及点A处的切线可表示为(其中为系数).
即.
对比项、x项及y项系数得
将①代入②③,消去并化简得,即.
故直线的方程为,直线过定点.又,D在以为直径的圆上.中点即为圆心Q.
经检验,直线垂直于x轴时也成立.故存在,使得.
[方法四]:
设.
若直线的斜率不存在,则.
因为,则,即.
由,解得或(舍).
所以直线的方程为.
若直线的斜率存在,设直线的方程为,则.
令,则.
又,令,则.
因为,所以,
即或.
当时,直线的方程为.所以直线恒过,不合题意;
当时,直线的方程为,所以直线恒过.
综上,直线恒过,所以.
又因为,即,所以点D在以线段为直径的圆上运动.
取线段的中点为,则.
所以存在定点Q,使得为定值.
【整体点评】(2)方法一:设出直线方程,然后与椭圆方程联立,通过题目条件可知直线过定点,再根据平面几何知识可知定点即为的中点,该法也是本题的通性通法;
方法二:通过坐标系平移,将原来的O点平移至点A处,设直线的方程为,再通过与椭圆方程联立,构建齐次式,由韦达定理求出的关系,从而可知直线过定点,从而可知定点即为的中点,该法是本题的最优解;
方法三:设直线,再利用过点的曲线系,根据比较对应项系数可求出的关系,从而求出直线过定点,故可知定点即为的中点;
方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解以及的计算.
23.(1);(2),.
【分析】(1)求出、,利用可得出关于、的齐次等式,可解得椭圆的离心率的值;
(2)[方法四]由(1)可得出的方程为,联立曲线与的方程,求出点的坐标,利用抛物线的定义结合可求得的值,进而可得出与的标准方程.
【详解】(1),轴且与椭圆相交于、两点,
则直线的方程为,
联立,解得,则,
抛物线的方程为,联立,
解得,,
,即,,
即,即,
,解得,因此,椭圆的离心率为;
(2)[方法一]:椭圆的第二定义
由椭圆的第二定义知,则有,
所以,即.
又由,得.
从而,解得.
所以.
故椭圆与抛物线的标准方程分别是.
[方法二]:圆锥曲线统一的极坐标公式
以为极点,x轴的正半轴为极轴,建立极坐标系.
由(Ⅰ)知,又由圆锥曲线统一的极坐标公式,得,由,得,两式联立解得.
故的标准方程为,的标准方程为.
[方法三]:参数方程
由(1)知,椭圆的方程为,
所以的参数方程为x=2c⋅csθ,y=3c⋅sinθ(为参数),
将它代入抛物线的方程并化简得,
解得或(舍去),
所以,即点M的坐标为.
又,所以由抛物线焦半径公式有,即,解得.
故的标准方程为,的标准方程为.
[方法四]【最优解】:利用韦达定理
由(1)知,,椭圆的方程为,
联立,消去并整理得,
解得或(舍去),
由抛物线的定义可得,解得.
因此,曲线的标准方程为,
曲线的标准方程为.
【整体点评】(2)方法一:椭圆的第二定义是联系准线与离心率的重要工具,涉及离心率的问题不妨考虑使用第二定义,很多时候会使得问题简单明了.
方法二:圆锥曲线统一的极坐标公式充分体现了圆锥曲线的统一特征,同时它也是解决圆锥曲线问题的一个不错的思考方向.
方法三:参数方程是一种重要的数学工具,它将圆锥曲线的问题转化为三角函数的问题,使得原来抽象的问题更加具体化.
方法四:韦达定理是最常用的处理直线与圆锥曲线位置关系的方法,联立方程之后充分利用韦达定理可以达到设而不求的效果.
24.(1);(2)18.
【分析】(1)由题意分别求得a,b的值即可确定椭圆方程;
(2)首先利用几何关系找到三角形面积最大时点N的位置,然后联立直线方程与椭圆方程,结合判别式确定点N到直线AM的距离即可求得三角形面积的最大值.
【详解】(1)由题意可知直线AM的方程为:,即.
当y=0时,解得,所以a=4,
椭圆过点M(2,3),可得,
解得b2=12.
所以C的方程:.
(2)设与直线AM平行的直线方程为:,
如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.
联立直线方程与椭圆方程,
可得:,
化简可得:,
所以,即m2=64,解得m=±8,
与AM距离比较远的直线方程:,
直线AM方程为:,
点N到直线AM的距离即两平行线之间的距离,
利用平行线之间的距离公式可得:,
由两点之间距离公式可得.
所以△AMN的面积的最大值:.
【点睛】解决直线与椭圆的综合问题时,要注意:
(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
25.(1);(2):,: .
【分析】(1)根据题意求出的方程,结合椭圆和抛物线的对称性不妨设在第一象限,运用代入法求出点的纵坐标,根据,结合椭圆离心率的公式进行求解即可;
(2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;
【详解】解:(1)因为椭圆的右焦点坐标为:,所以抛物线的方程为,其中.
不妨设在第一象限,因为椭圆的方程为:,
所以当时,有,因此的纵坐标分别为,;
又因为抛物线的方程为,所以当时,有,
所以的纵坐标分别为,,故,.
由得,即,解得(舍去),.
所以的离心率为.
(2)由(1)知,,故,所以的四个顶点坐标分别为,,,,的准线为.
由已知得,即.
所以的标准方程为,的标准方程为.
【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.
26.(1)详见解析(2)详见解析
【分析】(1)分别求出直线AM与BM的斜率,由已知直线AM与BM的斜率之积为−,可以得到等式,化简可以求出曲线C的方程,注意直线AM与BM有斜率的条件;
(2)(i)设出直线的方程,与椭圆方程联立,求出P,Q两点的坐标,进而求出点的坐标,求出直线的方程,与椭圆方程联立,利用根与系数关系求出的坐标,再求出直线的斜率,计算的值,就可以证明出是直角三角形;
(ii)由(i)可知三点坐标,是直角三角形,求出的长,利用面积公式求出的面积,利用导数求出面积的最大值.
【详解】(1)直线的斜率为,直线的斜率为,由题意可知:,所以曲线C是以坐标原点为中心,焦点在轴上,不包括左右两顶点的椭圆,其方程为;
(2)(i)
[方法一]【分别求得斜率的表达式利用斜率之积为即可证得题中的结论】
依题意设,
直线的斜率为,则,
所以.
又,所以,
进而有,即是直角三角形.
[方法二]【利用三点共线和点差法真的斜率之积为即可证得题中的结论】
由题意设,则.
因为Q,E,G三点共线,所以,
又因为点P,G在椭圆上,所以,
两式相减得,
所以,所以.
(ii)
[方法一]【求得面积函数,然后求导确定最值】
设,则直线的方程为,联立解得所以直线的方程为.联立直线的方程和椭圆C的方程,可得,则,所以.
令,即
.
注意到,得,所以在区间内单调递增,在区间内单调递减,所以当时,.
[方法二]【求得面积表达式,然后利用基本不等式求最值】
设面积为S.设直线的方程为,由题意可知,直线的方程与椭圆的方程联立,即解得P点的横坐标.再由直线的方程和椭圆的方程联立,即
得,由韦达定理得.
由弦长公式得,.
.
当且仅当即时,等号成立.
[方法三]【利用弦长公式结合韦达定理求得面积表达式,然后由基本不等式求最值】
设的中点为N,直线的斜率为k,则其方程为.
由解得.由(Ⅰ)得.直线的方程为,直线的方程为,联立得,.
又,从而,进而.以下同解法二.
【整体点评】(2)(i)方法一:斜率之积为是证明垂直的核心和关键;
方法二:利用三点共线和点差法使得问题的处理更加简单.
(ii)方法一:导数是求最值的一种重要方法,在求最值的时候几乎所有问题都可以考虑用导数求解;
方法二:基本不等式要注意一正二定三相等,缺一不可;
方法三:使用基本不等式的前提是构造解析式使得和或者乘积为定值.
27.(1) ;(2),a的取值范围为.
【分析】(1)先连结,由为等边三角形,得到,,;再由椭圆定义,即可求出结果;
(2)先由题意得到,满足条件的点存在,当且仅当,,,根据三个式子联立,结合题中条件,即可求出结果.
【详解】(1)连结,由为等边三角形可知:
在中,,,,
于是,
故椭圆C的离心率为;
(2)[方法一]【椭圆的定义+基本不等式】
由题意可知,且,所以.
因为,所以.
又因为,且,所以,从而,故,所以,a的取值范围为.
[方法二]【最优解:椭圆的定义+余弦定理】
由题意有则,即,
当且仅当时,等号成立.
此时P为短轴端点,,且满足.
即当时,存在点P,使得,且的面积等于16.
故,a的取值范围为.
[方法三]【余弦定理+面积公式】
设,对椭圆上任一点P,设,
由余弦定理有,所以,
即.则.
又,即.
由于,则以O为圆心,为直径的圆必与椭圆C有公共点,
即半焦距,故.
综上,,a的取值范围为.
【点睛】(2)方法一:椭圆的定义是解决焦点三角形的核心,基本不等式是处理最值与范围问题的常用方法;
方法二:椭圆的定义和余弦定理相结合是处理焦点三角形最典型的方法;
方法三:余弦定理和面积公式是处理面积问题的经典方法,处理最值、范围问题时常用此方法.
28.(Ⅰ);
(Ⅱ)见解析.
【分析】(Ⅰ)由题意确定a,b的值即可确定椭圆方程;
(Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM,ON的表达式,结合韦达定理确定t的值即可证明直线恒过定点.
【详解】(Ⅰ)因为椭圆的右焦点为,所以;
因为椭圆经过点,所以,所以,故椭圆的方程为.
(Ⅱ)设
联立得,
,,.
直线,令得,即;
同理可得.
因为,所以;
,解之得,所以直线方程为,所以直线恒过定点.
【点睛】解决直线与椭圆的综合问题时,要注意:
(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
29.(Ⅰ)(Ⅱ)或.
【分析】(Ⅰ)由题意得到关于a,b,c的方程,解方程可得椭圆方程;
(Ⅱ)联立直线方程与椭圆方程确定点P的坐标,从而可得OP的斜率,然后利用斜率公式可得MN的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率.
【详解】(Ⅰ) 设椭圆的半焦距为,依题意,,又,可得,b=2,c=1.
所以,椭圆方程为.
(Ⅱ)由题意,设.设直线的斜率为,
又,则直线的方程为,与椭圆方程联立,
整理得,可得,
代入得,
进而直线的斜率,
在中,令,得.
由题意得,所以直线的斜率为.
由,得,
化简得,从而.
所以,直线的斜率为或.
【点睛】本题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.
30.(1);(2).
【详解】分析:(I)由题意结合几何关系可求得.则椭圆的方程为.
(II)设点P的坐标为,点M的坐标为 ,由题意可得.
易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.
详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.
所以,椭圆的方程为.
(II)设点P的坐标为,点M的坐标为,由题意,,
点的坐标为.由的面积是面积的2倍,可得,
从而,即.
易知直线的方程为,由方程组消去y,可得.由方程组消去,可得.由,可得,两边平方,整理得,解得,或.
当时,,不合题意,舍去;当时,,,符合题意.
所以,的值为.
点睛:解决直线与椭圆的综合问题时,要注意:
(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
31.(Ⅰ);(Ⅱ)或
【详解】分析:(Ⅰ)由题意结合椭圆的性质可得a=3,b=2.则椭圆的方程为.
(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由题意可得5y1=9y2.由方程组可得.由方程组可得.据此得到关于k的方程,解方程可得k的值为或
详解:(Ⅰ)设椭圆的焦距为2c,由已知有,
又由a2=b2+c2,可得2a=3b.由已知可得,,,
由,可得ab=6,从而a=3,b=2.
所以,椭圆的方程为.
(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).
由已知有y1>y2>0,故.
又因为,而∠OAB=,故.
由,可得5y1=9y2.
由方程组消去x,可得.
易知直线AB的方程为x+y–2=0,
由方程组消去x,可得.
由5y1=9y2,可得5(k+1)=,
两边平方,整理得,
解得,或.
所以,k的值为或
点睛:解决直线与椭圆的综合问题时,要注意:
(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
32.(Ⅰ);(Ⅱ);(Ⅲ).
【分析】(Ⅰ)根据题干可得的方程组,求解的值,代入可得椭圆方程;
(Ⅱ)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;
(Ⅲ)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.
【详解】(Ⅰ)由题意得,所以,
又,所以,所以,
所以椭圆的标准方程为;
(Ⅱ)设直线的方程为,
由消去可得,
则,即,
设,,则,,
则,
易得当时,,故的最大值为;
(Ⅲ)设,,,,
则 ①, ②,
又,所以可设,直线的方程为,
由消去可得,
则,即,
又,代入①式可得,所以,
所以,同理可得.
故,,
因为三点共线,所以,
将点的坐标代入化简可得,即.
【点睛】本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.
33.
【分析】不妨假设,根据图形可知,,再根据同角三角函数基本关系即可求出;再根据椭圆的定义求出,即可求得离心率.
【详解】
如图所示:不妨假设,设切点为,
,
所以, 由,所以,,
于是,即,所以.
故答案为:;.
相关试卷
这是一份24-平面解析几何(直线与圆锥曲线的位置关系)-五年(2018-2022)高考数学真题按知识点分类汇编,共120页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份23-平面解析几何(圆锥曲线之抛物线)-五年(2018-2022)高考数学真题按知识点分类汇编,共39页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。
这是一份22-平面解析几何(圆锥曲线之双曲线)-五年(2018-2022)高考数学真题按知识点分类汇编,共28页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。