|试卷下载
搜索
    上传资料 赚现金
    第二十六章 反比例函数(中档卷)——2022-2023学年九年级下册数学单元卷(人教版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第二十六章 反比例函数(中档卷)(原卷版).docx
    • 解析
      第二十六章 反比例函数(中档卷)(解析版).docx
    第二十六章 反比例函数(中档卷)——2022-2023学年九年级下册数学单元卷(人教版)01
    第二十六章 反比例函数(中档卷)——2022-2023学年九年级下册数学单元卷(人教版)02
    第二十六章 反比例函数(中档卷)——2022-2023学年九年级下册数学单元卷(人教版)03
    第二十六章 反比例函数(中档卷)——2022-2023学年九年级下册数学单元卷(人教版)01
    第二十六章 反比例函数(中档卷)——2022-2023学年九年级下册数学单元卷(人教版)02
    第二十六章 反比例函数(中档卷)——2022-2023学年九年级下册数学单元卷(人教版)03
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第二十六章 反比例函数(中档卷)——2022-2023学年九年级下册数学单元卷(人教版)

    展开
    这是一份第二十六章 反比例函数(中档卷)——2022-2023学年九年级下册数学单元卷(人教版),文件包含第二十六章反比例函数中档卷解析版docx、第二十六章反比例函数中档卷原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    班级 姓名 学号 分数
    第二十六章 反比例函数(B卷·能力提升练)
    (时间:60分钟,满分:100分)
    一.选择题(共11小题,满分44分,每小题4分)
    1.(2022•襄阳)若点A(﹣2,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1,y2的大小关系是(  )
    A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定
    【分析】根据反比例函数图象上点的坐标特征即可求解.
    【解答】解:∵点A(﹣2,y1),B(﹣1,y2)都在反比例函数y=的图象上,k=2>0,
    ∴在每个象限内y随x的增大而减小,
    ∵﹣2<﹣1,
    ∴y1>y2,
    故选:C.
    【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.
    2.(2022•菏泽)根据如图所示的二次函数y=ax2+bx+c的图象,判断反比例函数y=与一次函数y=bx+c的图象大致是(  )

    A. B. C. D.
    【分析】先根据二次函数的图象,确定a、b、c的符号,再根据a、b、c的符号判断反比例函数y=与一次函数y=bx+c的图象经过的象限即可.
    【解答】解:由二次函数图象可知a>0,c<0,
    由对称轴x=﹣>0,可知b<0,
    所以反比例函数y=的图象在一、三象限,一次函数y=bx+c图象经过二、三、四象限.
    故选:A.
    【点评】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出a、b、c的取值范围.
    3.(2022•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=(c≠0)在同一直角坐标系中的图象可能是(  )

    A.
    B.
    C.
    D.
    【分析】直接利用二次函数图象经过的象限得出a,b,c的取值范围,进而利用一次函数与反比例函数的性质得出答案.
    【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,
    ∴a>0,
    ∵该抛物线对称轴位于y轴的右侧,
    ∴a、b异号,即b<0.
    ∵抛物线交y轴的负半轴,
    ∴c<0,
    ∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=(c≠0)在二、四象限.
    故选:A.
    【点评】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.
    4.(2022•西藏)在同一平面直角坐标系中,函数y=ax+b与y=(其中a,b是常数,ab≠0)的大致图象是(  )
    A. B.
    C. D.
    【分析】根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.
    【解答】解:若a>0,b>0,
    则y=ax+b经过一、二、三象限,反比例函数y=(ab≠0)位于一、三象限,
    若a>0,b<0,
    则y=ax+b经过一、三、四象限,反比例函数数y=(ab≠0)位于二、四象限,
    若a<0,b>0,
    则y=ax+b经过一、二、四象限,反比例函数y=(ab≠0)位于二、四象限,
    若a<0,b<0,
    则y=ax+b经过二、三、四象限,反比例函数y=(ab≠0)位于一、三象限,
    故选:A.
    【点评】本题主要考查了一次函数和反比例函数的图象,熟知一次函数、反比例函数的性质是解题的关键.
    5.(2022•长春)如图,在平面直角坐标系中,点P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,将线段QP绕点Q顺时针旋转60°得到线段QM.若点M也在该反比例函数的图象上,则k的值为(  )

    A. B. C. D.4
    【分析】作MN⊥x轴于N,根据题意P(,2),PQ=2,由于将线段QP绕点Q顺时针旋转60°得到线段QM,得出QM=QP=2,∠PQM=60°,即可得出∠MQN=30°,即可得出MN=QM=1,QN==,得到M(+,1),代入反比例函数解析式即可求得k的值.
    【解答】解:作MN⊥x轴于N,
    ∵P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,
    ∴P(,2),
    ∴PQ=2,
    ∵将线段QP绕点Q顺时针旋转60°得到线段QM.
    ∴QM=QP=2,∠PQM=60°,
    ∴∠MQN=90°﹣60°=30°,
    ∴MN=QM=1,
    ∴QN==,
    ∴M(+,1),
    ∵点M也在该反比例函数的图象上,
    ∴k=+,
    解得k=2,
    故选:C.

    【点评】本题考查了反比例函数图象上点的坐标特征,坐标与图形变化﹣旋转,表示出M点的坐标是解题的关键.
    6.(2022•贵阳)如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在反比例函数y=(k>0)的图象上.根据图中四点的位置,判断这四个点中不在函数y=的图象上的点是(  )

    A.点P B.点Q C.点M D.点N
    【分析】根据反比例函数图象上点的坐标特征以及反比例函数的图象进行判断即可.
    【解答】解:如图,反比例函数y=的图象是双曲线,若点在反比例函数的图象上,则其纵横坐标的积为常数k,即xy=k,
    通过观察发现,点P、Q、N可能在图象上,点M不在图象上,
    故选:C.

    【点评】本题考查反比例函数图象上点的坐标特征,掌握反比例函数的图象以及图象上点的坐标特征是正确判断的前提.
    7.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=在同一平面直角坐标系中的图象大致是(  )

    A. B.
    C. D.
    【分析】由二次函数y=ax2+bx+c的部分函数图象判断a,b2﹣4ac及4a+2b+c的符号,即可得到答案.
    【解答】解:∵二次函数y=ax2+bx+c的部分函数图象开口向上,
    ∴a>0,
    ∵二次函数y=ax2+bx+c的部分函数图象顶点在x轴下方,开口向上,
    ∴二次函数y=ax2+bx+c的图象与x轴有两个交点,b2﹣4ac>0,
    ∴一次函数y=ax+b2﹣4ac的图象位于第一,二,三象限,
    由二次函数y=ax2+bx+c的部分函数图象可知,点(2,4a+2b+c)在x轴上方,
    ∴4a+2b+c>0,
    ∴y=的图象位于第一,三象限,
    据此可知,符合题意的是B,
    故选:B.
    【点评】本题考查一次函数,二次函数,反比例函数的图象,解题的关键是掌握三种图象的性质.
    8.(2022•黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数y=的图象上,顶点A在反比例函数y=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是(  )

    A.2 B.1 C.﹣1 D.﹣2
    【分析】设B(a,),根据四边形OBAD是平行四边形,推出AB∥DO,表示出A点的坐标,求出AB=a﹣,再根据平行四边形面积公式列方程,解出即可.
    【解答】解:设B(a,),
    ∵四边形OBAD是平行四边形,
    ∴AB∥DO,
    ∴A(,),
    ∴AB=a﹣,
    ∵平行四边形OBAD的面积是5,
    ∴(a﹣)=5,
    解得k=﹣2,
    故选:D.
    【点评】本题考查反比例函数比例系数k的几何意义、反比例函数图象上点的坐标特征、平行四边形性质,掌握反比例函数比例系数k的几何意义及函数图象上点的坐标特征,设出点的坐标、根据平行四边形面积公式列方程是解题的关键.
    9.(2022•无锡)一次函数y=mx+n的图象与反比例函数y=的图象交于点A、B,其中点A、B的坐标为A(﹣,﹣2m)、B(m,1),则△OAB的面积是(  )
    A.3 B. C. D.
    【分析】根据反比例函数图象上点的坐标特征求出m,进而求出点A、B的坐标,根据三角形的面积公式计算即可.
    【解答】解:∵点A(﹣,﹣2m)在反比例函数y=上,
    ∴﹣2m=,
    解得:m=2,
    ∴点A的坐标为:(﹣,﹣4),点B的坐标为(2,1),
    ∴S△OAB=××5﹣××4﹣×2×1﹣×1=,
    故选:D.
    【点评】本题考查的是一次函数与反比例函数的交点、反比例函数图象上点的坐标特征,求出点A、B的坐标是解题的关键.
    10.(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=(  )

    A.36 B.18 C.12 D.9
    【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE=m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图象上,D(3,a)在y=(k2>0)的图象上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.
    【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:

    ∵四边形ABCD是正方形,
    ∴AE=BE=CE=DE,
    设AE=BE=CE=DE=m,D(3,a),
    ∵BD∥y轴,
    ∴B(3,a+2m),A(3+m,a+m),
    ∵A,B都在反比例函数y=(k1>0)的图象上,
    ∴k1=3(a+2m)=(3+m)(a+m),
    ∵m≠0,
    ∴m=3﹣a,
    ∴B(3,6﹣a),
    ∵B(3,6﹣a)在反比例函数y=(k1>0)的图象上,D(3,a)在y=(k2>0)的图象上,
    ∴k1=3(6﹣a)=18﹣3a,k2=3a,
    ∴k1+k2=18﹣3a+3a=18;
    故选:B.
    【点评】本题考查反比例函数及应用,涉及正方形性质,解题的关键是用含字母的代数式表示相关点坐标.
    11.(2022•武汉)已知点A(x1,y1),B(x2,y2)在反比例函数y=的图象上,且x1<0<x2,则下列结论一定正确的是(  )
    A.y1+y2<0 B.y1+y2>0 C.y1<y2 D.y1>y2
    【分析】先根据反比例函数y=判断此函数图象所在的象限,再根据x1<0<x2判断出A(x1,y1)、B(x2,y2)所在的象限即可得到答案.
    【解答】解:∵反比例函数y=中的6>0,
    ∴该双曲线位于第一、三象限,且在每一象限内y随x的增大而减小,
    ∵点A(x1,y1),B(x2,y2)在反比例函数y=的图象上,且x1<0<x2,
    ∴点A位于第三象限,点B位于第一象限,
    ∴y1<y2.
    故选:C.
    【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数的性质是解答此题的关键.
    二.填空题(共7小题,满分21分,每小题3分)
    12.(2022•毕节市)如图,在平面直角坐标系中,正方形ABCD的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数y=(x>0,k>0)的图象经过点C,E.若点A(3,0),则k的值是  4 .

    【分析】利用中点坐标公式可得点C的横坐标为1,作CH⊥y轴于H,再利用AAS证明△AOB≌△BHC,得BH=OA=3,OB=CH=1,从而得出点C的坐标,即可得出答案.
    【解答】解:设C(m,),
    ∵四边形ABCD是正方形,
    ∴点E为AC的中点,
    ∴E(,),
    ∵点E在反比例函数y=上,
    ∴,
    ∴m=1,
    作CH⊥y轴于H,

    ∴CH=1,
    ∵四边形ABCD是正方形,
    ∴BA=BC,∠ABC=90°,
    ∴∠OBA=∠HCB,
    ∵∠AOB=∠BHC,
    ∴△AOB≌△BHC(AAS),
    ∴BH=OA=3,OB=CH=1,
    ∴C(1,4),
    ∴k=4,
    故答案为:4.
    【点评】本题主要考查了反比例函数图象上点的坐标的特征,正方形的性质,全等三角形的判定与性质等知识,利用全等三角形的判定与性质求出点C的坐标是解题的关键.
    13.(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为  9 .

    【分析】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,设OC=b,通过解直角三角形和等边三角形的性质用b表示出A、B两点的坐标,进而代入反比例函数的解析式列出b的方程求得b,便可求得k的值.
    【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,
    ∵△OMN是边长为10的等边三角形,
    ∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°

    设OC=b,则BC=,OB=2b,
    ∴BM=OM﹣OB=10﹣2b,B(b,b),
    ∵∠M=60°,AB⊥OM,
    ∴AM=2BM=20﹣4b,
    ∴AN=MN﹣AM=10﹣(20﹣4b)=4b﹣10,
    ∵∠AND=60°,
    ∴DN==2b﹣5,AD=AN=2b﹣5,
    ∴OD=ON﹣DN=15﹣2b,
    ∴A(15﹣2b,2b﹣5),
    ∵A、B两点都在反比例函数y=(x>0)的图象上,
    ∴k=(15﹣2b)(2b﹣5)=b•b,
    解得b=3或5,
    当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,
    ∴b=3,
    ∴k=b•b=9,
    故答案为:9.
    【点评】本题主要考查了反比例函数的图象与性质,等边三角形的性质,解直角三角形,关键是列出b的方程.
    14.(2022•鄂州)如图,已知直线y=2x与双曲线y=(k为大于零的常数,且x>0)交于点A,若OA=,则k的值为  2 .

    【分析】由点A在直线y=2x上,且OA=,可求得A点坐标为( 1,2)把已知点的坐标代入解析式可得,k=2.
    【解答】解:设A(x,y),
    ∵点A在直线y=2x上,且OA=,
    ∴A点坐标为( 1,2),
    ∵点A在双曲线y=(x>0)上,
    ∴k=2,
    故答案为:2.
    【点评】本题主要考查反比例函数与一次函数的交点问题,熟练掌握一次函数、反比例函数的图象与性质,是数形结合题.
    15.(2022•黔西南州)已知点(2,y1),(3,y2)在反比例函数y=的图象上,则y1与y2的大小关系是  y1>y2 .
    【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据0<x1<x2,判断出两点所在的象限,根据该函数在此象限内的增减性即可得出结论.
    【解答】解:∵反比例函数y=中,k=6>0,
    ∴此函数图象的两个分支在一、三象限,
    ∵0<2<3,
    ∴两点都在第一象限,
    ∵在第一象限内y的值随x的增大而减小,
    ∴y1>y2.
    故答案为:y1>y2.
    【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及两点所在的象限是解答此题的关键.
    16.(2022•青海)如图,一块砖的A,B,C三个面的面积之比是5:3:1.如果A,B,C三个面分别向下在地上,地面所受压强分别为P1,P2,P3,压强的计算公式为P=,其中P是压强,F是压力,S是受力面积,则P1,P2,P3的大小关系为  P1<P2<P3 (用小于号连接).

    【分析】根据反比例函数的性质解答即可.
    【解答】解:∵P=,F>0,
    ∴P随S的增大而减小,
    ∵A,B,C三个面的面积比是5:3:1,
    ∴P1,P2,P3的大小关系是:P1<P2<P3,
    故答案为:P1<P2<P3.
    【点评】本题考查了反比例函数的应用,正确把握反比例函数的性质是解题的关键.
    17.(2022•铜仁市)如图,点A、B在反比例函数的图象上,AC⊥y轴,垂足为D,BC⊥AC.若四边形AOBC的面积为6,,则k的值为  3 .

    【分析】设点,可得AD=a,,从而得到CD=3a,再由BC⊥AC.可得点B,从而得到,然后根据S梯形OBCD=S△AOD+S四边形AOBC,即可求解.
    【解答】解:设点,
    ∵AC⊥y轴,
    ∴AD=a,,
    ∵,
    ∴AC=2a,
    ∴CD=3a,
    ∵BC⊥AC.AC⊥y轴,
    ∴BC∥y轴,
    ∴点B,
    ∴,
    ∵S梯形OBCD=S△AOD+S四边形AOBC,
    ∴,
    解得:k=3.
    故答案为:3.
    【点评】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.
    18.(2022•辽宁)如图,矩形OABC的顶点B在反比例函数y=(x>0)的图象上,点A在x轴的正半轴上,AB=3BC,点D在x轴的负半轴上,AD=AB,连接BD,过点A作AE∥BD交y交于点E,点F在AE上,连接FD,FB.若△BDF的面积为9,则k的值是  6 .

    【分析】根据同底等高把面积进行转化,再根据k的几何意义,从而求出k的值.
    【解答】解:因为AE∥BD,依据同底等高的原理,△BDF的面积等于△ABD的面积,
    设B(a,3a)(a>0),则0.5×3a•3a=9,
    解得a=,
    所以3a2=6.
    故k=6.
    故答案为:6.
    【点评】本题考查了反比例函数系数k的几何意义,关键是根据同底等高把面积进行转化.
    三.解答题(共4小题,满分35分)
    19.(8分)(2022•菏泽)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数y=的图象都经过A(2,﹣4)、B(﹣4,m)两点.
    (1)求反比例函数和一次函数的表达式;
    (2)过O、A两点的直线与反比例函数图象交于另一点C,连接BC,求△ABC的面积.

    【分析】(1)把A,B两点的坐标代入y=中可计算k和m的值,确定点B的坐标,根据待定系数法即可求得反比例函数和一次函数的解析式;
    (2)如图,设AB与x轴交于点D,证明CD⊥x轴于D,根据S△ABC=S△ACD+S△BCD即可求得.
    【解答】解:(1)将A(2,﹣4),B(﹣4,m)两点代入y=中,得k=2×(﹣4)=﹣4m,
    解得,k=﹣8,m=2,
    ∴反比例函数的表达式为y=﹣;
    将A(2,﹣4)和B(﹣4,2)代入y=ax+b中得,
    解得,
    ∴一次函数的表达式为:y=﹣x﹣2;
    (2)如图,设AB与x轴交于点D,连接CD,
    由题意可知,点A与点C关于原点对称,
    ∴C(﹣2,4).
    在y=﹣x﹣2中,当x=﹣2时,y=0,
    ∴D(﹣2,0),
    ∴CD垂直x轴于点D,

    ∴S△ABC=S△ADC+S△BCD=×4×(2+2)+×4×(4﹣2)=8+4=12.
    【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形的面积等,数形结合是解题的关键.
    20.(8分)(2022•六盘水)如图,正比例函数y=x与反比例函数y=的图象交于A,B两点.
    (1)求A,B两点的坐标;
    (2)将直线y=x向下平移a个单位长度,与反比例函数在第一象限的图象交于点C,与x轴交于点D,与y轴交于点E,若=,求a的值.

    【分析】(1)根据正比例函数与反比例函数,即可求出两交点坐标;
    (2)根据直线y=x向下平移a个单位长度,可得直线CD解析式为:y=x﹣a,所以点D的坐标为(a,0),过点C作CF⊥x轴于点F,根据CF∥OE,可得==,所以FD=a,可得点C的坐标是(a,a).然后利用反比例函数即可解决问题.
    【解答】解:(1)∵正比例函数y=x与反比例函数y=的图象交于A、B两点,
    ∴x=,
    解得x=±2(负值舍去),
    ∴A(2,2),B(﹣2,﹣2);
    (2)∵直线y=x向下平移a个单位长度,
    ∴直线CD解析式为:y=x﹣a,
    当y=0时,x=a,
    ∴点D的坐标为(a,0),
    如图,过点C作CF⊥x轴于点F,
    ∴CF∥OE,
    ∴==,
    ∴FD=a,
    ∴OF=OD+FD=a,

    ∵点C在直线CD上,
    ∴y=a﹣a=a,
    ∴CF=a,
    ∴点C的坐标是(a,a).
    ∵点C在反比例函数y=的图象上,
    ∴a×a=4,
    解得a=±3(负值舍去),
    ∴a=3.
    【点评】本题是一次函数与反比例函数的交点问题,考查了一次函数图象上点的坐标特征,反比例函数的中心对称性,熟练掌握反比例函数的性质是解题的关键.
    21.(9分)(2022•安顺)如图,在平面直角坐标系中,菱形ABCD的顶点D在y轴上,A,C两点的坐标分别为(4,0),(4,m),直线CD:y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于C,P(﹣8,﹣2)两点.
    (1)求该反比例函数的解析式及m的值;
    (2)判断点B是否在该反比例函数的图象上,并说明理由.

    【分析】(1)把P(﹣8,﹣2)代入y=可得反比例函数的解析式为y=,即得m==4;
    (2)连接AC,BD交于H,由C(4,4),P(﹣8,﹣2)得直线CD的解析式是y=x+2,即得D(0,2),根据四边形ABCD是菱形,知H是AC中点,也是BD中点,由A(4,0),C(4,4)可得H(4,2),设B(p,q),有,可解得B(8,2),从而可知B在反比例函数y=的图象上.
    【解答】解:(1)把P(﹣8,﹣2)代入y=得:
    ﹣2=,
    解得k=16,
    ∴反比例函数的解析式为y=,
    ∵C(4,m)在反比例函数y=的图象上,
    ∴m==4;
    ∴反比例函数的解析式为y=,m=4;
    (2)B在反比例函数y=的图象上,理由如下:
    连接AC,BD交于H,如图:

    把C(4,4),P(﹣8,﹣2)代入y=ax+b得:

    解得,
    ∴直线CD的解析式是y=x+2,
    在y=x+2中,令x=0得y=2,
    ∴D(0,2),
    ∵四边形ABCD是菱形,
    ∴H是AC中点,也是BD中点,
    由A(4,0),C(4,4)可得H(4,2),
    设B(p,q),
    ∵D(0,2),
    ∴,
    解得,
    ∴B(8,2),
    在y=中,令x=8得y=2,
    ∴B在反比例函数y=的图象上.
    【点评】本题考查反比例函数与一次函数综合,涉及待定系数法,菱形的性质及应用,函数图象上点坐标的特征等,解题的关键是求出点B的坐标.
    22.(10分)(2022•鄂尔多斯)如图,已知一次函数y=ax+b与反比例函数y=(x<0)的图象交于A(﹣2,4),B(﹣4,2)两点,且与x轴和y轴分别交于点C、点D.
    (1)根据图象直接写出不等式<ax+b的解集;
    (2)求反比例函数与一次函数的解析式;
    (3)点P在y轴上,且S△AOP=S△AOB,请求出点P的坐标.

    【分析】(1)通过图象位置关系解不等式.
    (2)用待定系数法法求解析式.
    (2)先求△AOB的面积,再求P的坐标.
    【解答】解:(1)当y=的图象在y=ax+b图象的下方时,<ax+b成立,
    ∴﹣4<x<﹣2.
    (2)将A(﹣2,4)代入y=得:﹣8=m,
    ∴反比例函数为:y=﹣.
    将A(﹣2,4),B(﹣4,2)代入y=ax+b得:,
    解得:,
    ∴一次函数的表达式为:y=x+6.
    (3)在y=x+6中,当y=0时,x=﹣6,
    ∴C(﹣6,0).
    ∴S△ABO=S△AOC﹣S△BOC
    =OC×(yA﹣yB)
    =×6×2
    =6,
    ∴S△AOP=×6=3,
    ∵P在y轴上,
    ∴OP×|xA|=3,
    ∴OP=3.
    ∴P(0,3)或(0.﹣3).
    【点评】本题考查一次函数和反比例函数的综合问题,数形结合,将线段的长度转化为坐标运算是求解本题的关键.
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第二十六章 反比例函数(中档卷)——2022-2023学年九年级下册数学单元卷(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map