资料中包含下列文件,点击文件名可预览资料内容
![相互独立事件为背景的概率模型(原卷版)第1页](http://www.enxinlong.com/img-preview/3/3/14067576/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![相互独立事件为背景的概率模型(原卷版)第2页](http://www.enxinlong.com/img-preview/3/3/14067576/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![相互独立事件为背景的概率模型(原卷版)第3页](http://www.enxinlong.com/img-preview/3/3/14067576/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![相互独立事件为背景的概率模型(解析版)第1页](http://www.enxinlong.com/img-preview/3/3/14067576/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![相互独立事件为背景的概率模型(解析版)第2页](http://www.enxinlong.com/img-preview/3/3/14067576/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![相互独立事件为背景的概率模型(解析版)第3页](http://www.enxinlong.com/img-preview/3/3/14067576/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩4页未读,
继续阅读
所属成套资源:【三轮冲刺】2023年高考数学热点专题模型通关(概率篇)
成套系列资料,整套一键下载
相互独立事件为背景的概率模型——【高考三轮冲刺】2023年高考数学概率专题模型通关训练(原卷版+解析版)
展开这是一份相互独立事件为背景的概率模型——【高考三轮冲刺】2023年高考数学概率专题模型通关训练(原卷版+解析版),文件包含相互独立事件为背景的概率模型解析版docx、相互独立事件为背景的概率模型原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
求以相互独立事件为背景的概率模型的解题思路:
母题呈现
【典例】(2022·江苏省连云港市锦屏高级中学高三期中) 某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是,甲、丙二人都没有击中目标的概率是,乙、丙二人都击中目标的概率是.甲乙丙是否击中目标相互独立.
(1)求乙、丙二人各自击中目标的概率;
(2)设乙、丙二人中击中目标的人数为X,求X的分布列和数学期望.
【解题指导】(1)求出→且与→求乙、丙二人各自击中目标的概率.
(2)写出X的可能取值→求出相应的概率→求出X的分布列→E(X).
方法总结
考查概率、离散型随机变量的分布列、数学期望的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力.
模拟训练
1.【跨学科融合】现有三种基本电子模块,电流能通过的概率都是p,电流能否通过各模块相互独立.已知中至少有一个能通过电流的概率为0.999.现由该电子模块组装成某预警系统M(如图所示),针对系统M而言,只要有电流通过该系统就能正常工作.
(Ⅰ)求p
(II)求预警系统M正常工作的概率
2.【与互斥事件结合】计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为,,,在实际操作考试中“合格”的概率依次为,,,所有考试是否合格相互之间没有影响.
(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?
(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.
2.【与五育融合】冰壶是2022年2月4日至2月20日在中国举行的第24届冬季奥运会的比赛项目之一.冰壶比赛的场地如图所示,其中左端(投掷线MN的左侧)有一个发球区,运动员在发球区边沿的投掷线MN将冰壶掷出,使冰壶沿冰道滑行,冰道的右端有一圆形的营垒,以场上冰壶最终静止时距离营垒区圆心O的远近决定胜负,甲、乙两人进行投掷冰壶比赛,规定冰壶的重心落在圆O中,得3分,冰壶的重心落在圆环A中,得2分,冰壶的重心落在圆环B中,得1分,其余情况均得0分.已知甲、乙投掷冰壶的结果互不影响,甲、乙得3分的概率分别为,;甲、乙得2分的概率分别为,;甲、乙得1分的概率分别为,.
(1)求甲、乙两人所得分数相同的概率;
(2)设甲、乙两人所得的分数之和为X,求X的分布列和期望.
3.【跨方差结合】成都市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了成都市三类垃圾箱中总计1000吨生活垃圾,数据统计如表所示(单位:吨):
(1)试估计厨余垃圾投放正确的概率:
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中,.当数据a,b,c的方差最大时,写出a,b,c的值(结论不要求证明),并求此时的值.
注:,其中为数据,,,的平均数.
4.【与对立事件结合】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:①里程计费:1元/公里;②时间计费:元/分.已知陈先生的家离上班公司公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为(分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示
将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为分.
(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于分钟的概率;
(2)若公司每月发放元的交通补助费用,请估计是否足够让陈先生一个月上下班租用新能源租赁汽车(每月按天计算),并说明理由.(同一时段,用该区间的中点值作代表)
6.【决策问题】甲、乙两人进行对抗比赛,每场比赛均能分出胜负.已知本次比赛的主办方提供8000元奖金并规定:①若有人先赢4场,则先赢4场者获得全部奖金同时比赛终止;②若无人先赢4场且比赛意外终止,则甲、乙便按照比赛继续进行各自赢得全部奖金的概率之比分配奖金.已知每场比赛甲赢的概率为,乙赢的概率为,且每场比赛相互独立.
(1)设每场比赛甲赢的概率为,若比赛进行了5场,主办方决定颁发奖金,求甲获得奖金的分布列;
(2)规定:若随机事件发生的概率小于0.05,则称该随机事件为小概率事件,我们可以认为该事件不可能发生,否则认为该事件有可能发生.若本次比赛,且在已进行的3场比赛中甲赢2场、乙赢1场,请判断:比赛继续进行乙赢得全部奖金是否有可能发生,并说明理由.
7.【与分布列结合】双败淘汰制是一种竞赛形式,与普通的单败淘汰制输掉一场即被淘汰不同,参赛者只有在输掉两场比赛后才丧失争夺冠军的可能.在双败淘汰制的比赛中,参赛者的数量一般是2的次方数,以保证每一轮都有偶数名参赛者.第一轮通过抽签,两人一组进行对阵,胜者进入胜者组,败者进入负者组.之后的每一轮直到最后一轮之前,胜者组的选手两人一组相互对阵,胜者进入下一轮,败者则降到负者组参加本轮负者组的第二阶段对阵;负者组的第一阶段,由之前负者组的选手(不包括本轮胜者组落败的选手)两人一组相互对阵,败者被淘汰(已经败两场),胜者进入第二阶段,分别对阵在本轮由胜者组中降组下来的选手,胜者进入下一轮,败者被淘汰.最后一轮,由胜者组最终获胜的选手(此前从未败过,记为)对阵负者组最终获胜的选手(败过一场,记为),若胜则获得冠军,若胜则双方再次对阵,胜者获得冠军.某围棋赛事采用双败淘汰制,共有甲、乙、丙等8名选手参赛.第一轮对阵双方由随机抽签产生,之后每一场对阵根据赛事规程自动产生对阵双方,每场对阵没有平局.
(1)设“在第一轮对阵中,甲、乙、丙都不互为对手”为事件,求的概率;
(2)已知甲对阵其余7名选手获胜的概率均为,解决以下问题:
①求甲恰在对阵三场后被淘汰的概率;
②若甲在第一轮获胜,设甲在该项赛事的总对阵场次为随机变量,求的分布列.
8.【与茎叶图结合】某市对创“市级示范性学校”的甲、乙两所学校进行复查验收,对办学的社会满意度一项评价随机访问了20为市民,这20位市民对这两所学校的评分(评分越高表明市民的评价越好)的数据如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
检查组将成绩分成了四个等级:成绩在区间的为等,在区间的为等,在区间的为等,在区间为等.
(Ⅰ)请用茎叶图表示上面的数据,并通过观察茎叶图,对两所学校办学的社会满意度进行比较,写出两个统计结论;
(Ⅱ)估计哪所学校的市民的评分等级为级或级的概率大,说明理由.
9.【与频率分布直方图结合】某家庭记录了未使用节水龙头天的日用水量数据(单位:)和使用了节水龙头天的日用水量数据,得到频数分布表如下:
未使用节水龙头天的日用水量频数分布表
使用了节水龙头天的日用水量频数分布表
(1)作出使用了节水龙头天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
10.【与函数结合】在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:
(1)求样本中患病者的人数和图中,的值;
(2)在该指标检测值为4的样本中随机选取2人,求这2人中有患病者的概率;
(3)某研究机构提出,可以选取常数(),若一名从业者该项身体指标检测值大于,则判断其患有这种职业病;若检测值小于,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患有职业病.写出使得判断错误的概率最小的的值及相应的概率(只需写出结论).“厨余垃圾”箱
“可回收物”箱
“其他垃圾”箱
厨余垃圾
500
50
50
可回收物
30
240
30
其他垃圾
20
20
60
日用水量
频数
日用水量
频数
相关试卷
新高考数学一轮复习《事件的相互独立性与条件概率》课时练习(2份打包,教师版+原卷版):
这是一份新高考数学一轮复习《事件的相互独立性与条件概率》课时练习(2份打包,教师版+原卷版),文件包含新高考数学一轮复习《事件的相互独立性与条件概率》课时练习教师版doc、新高考数学一轮复习《事件的相互独立性与条件概率》课时练习原卷版doc等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
超几何分布为背景的概率模型——【高考三轮冲刺】2023年高考数学概率专题模型通关训练(原卷版+解析版):
这是一份超几何分布为背景的概率模型——【高考三轮冲刺】2023年高考数学概率专题模型通关训练(原卷版+解析版),文件包含超几何分布为背景的概率模型解析版docx、超几何分布为背景的概率模型原卷版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
正态分布为背景的概率模型——【高考三轮冲刺】2023年高考数学概率专题模型通关训练(原卷版+解析版):
这是一份正态分布为背景的概率模型——【高考三轮冲刺】2023年高考数学概率专题模型通关训练(原卷版+解析版),文件包含正态分布为背景的概率模型解析版docx、正态分布为背景的概率模型原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。