初中数学北师大版八年级下册4 一元一次不等式课后练习题
展开
这是一份初中数学北师大版八年级下册4 一元一次不等式课后练习题,共5页。
一元一次不等式的解法(基础)知识讲解 【学习目标】1.理解并掌握一元一次不等式的概念及性质;2. 能够熟练解一元一次不等式;3. 掌握不等式解集的概念并会在数轴上表示解集.【要点梳理】 要点一、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,是一个一元一次不等式.要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系:相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式.不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:(或)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为(或)的形式(其中);(5)两边同除以未知数的系数,得到不等式的解集.要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用.(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘以(或除以)同一个负数时,不等号的方向要改变.要点三、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.要点诠释:不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立;②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a向左画. 注意:在表示a的点上画空心圆圈,表示不包括这一点.【典型例题】类型一、一元一次不等式的概念 1.下列式子中,是一元一次不等式的有哪些? (1)3x+5=0 (2)2x+3>5 (3) (4)≥2 (5)2x+y≤8【思路点拨】根据一元一次不等式的定义判断,(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数.【答案与详解】解:(2)、(3)是一元一次不等式.【总结升华】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可. 类型二、解一元一次不等式2.解不等式:,并把解集在数轴上表示出来. 【思路点拨】解不等式时去括号法则与解一元一次方程的去括号法则是一样的.【答案与详解】解:去括号,得:移项、合并同类项,得:系数化1得:这个不等式的解集在数轴上表示如图:【总结升华】在不等式的两边同乘以(或除以)负数时,必须改变不等号的方向.举一反三:【变式】不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).【答案】C.3. (2020•连云港)解不等式,并将解集在数轴上表示出来.【思路点拨】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【答案与详解】解:去分母,得:1+x<3x﹣3,移项,得:x﹣3x<﹣3﹣1,合并同类项,得:﹣2x<﹣4,系数化为1,得:x>2,将解集表示在数轴上如图:【总结升华】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.去分母时,不要漏乘不含分母的项.举一反三:【变式】若,,问x取何值时,.【答案】解:∵,, 若, 则有 即 ∴当时,.4.关于x的不等式2x-a≤-1的解集为x≤-1,则a的值是_________.【思路点拨】首先把a作为已知数求出不等式的解集,然后根据不等式的解集为x≤-1即可得到关于a的方程,解方程即可求解.【答案】-1【详解】由已知得:,由,得.【总结升华】解不等式要依据不等式的基本性质,注意移项要改变符号.举一反三:【变式1】如果关于x的不等式(a+1)x<a+1的解集是x>l,则a的取值范围是________.【答案】.【变式2】求不等式1+≥2﹣的非正整数解.【答案】解:1+≥2﹣6+3(x+1)≥12﹣2(x+7)6+3x+3≥12﹣2x﹣143x+2x≥12﹣14﹣6﹣35x≥﹣11x≥﹣2所以非正整数解为0,﹣1,﹣2.类型三、不等式的解及解集5.对于不等式4x+7(x-2)>8不是它的解的是( ).A.5 B.4 C.3 D.2【思路点拨】根据不等式解的定义作答.【答案】D【详解】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.【总结升华】不等式的解的定义与方程的解的定义是类似的,其判定方法是相同的.6.不等式x>1在数轴上表示正确的是 ( ).【思路点拨】根据不等式的解集在数轴上表示出来的方法画数轴即可.【答案】C【详解】解:∵不等式x>1
∴在数轴上表示为:
故选C.【总结升华】用数轴表示解集时,应注意两点:一是“边界点”,如果边界点包含于解集,则用实心圆点;二是“方向”,相对于边界而言,大于向右,小于向左,同时还应善于逆向思维,通过读数轴写出对应不等式的解集. 举一反三:【变式】如图,在数轴上表示的解集对应的是( ). A.-2<x<4 B.-2<x≤4 C.-2≤x<4 D.-2≤x≤4【答案】B.
相关试卷
这是一份初中数学2 直角三角形测试题,共9页。
这是一份初中数学北师大版八年级下册第二章 一元一次不等式和一元一次不等式组4 一元一次不等式测试题,共5页。
这是一份北师大版八年级下册2 提公因式法测试题,共4页。