|试卷下载
搜索
    上传资料 赚现金
    北师大版数学九年级下册《圆》全章复习与巩固—知识讲解(基础)(含答案)
    立即下载
    加入资料篮
    北师大版数学九年级下册《圆》全章复习与巩固—知识讲解(基础)(含答案)01
    北师大版数学九年级下册《圆》全章复习与巩固—知识讲解(基础)(含答案)02
    北师大版数学九年级下册《圆》全章复习与巩固—知识讲解(基础)(含答案)03
    还剩7页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中北师大版1 圆课时训练

    展开
    这是一份初中北师大版1 圆课时训练,共10页。

    《圆》全章复习与巩固知识讲解(基础)

            

    【学习目标】

    1.理解圆及其有关概念,理解弧、弦、圆心角的关系;探索并了解点与圆、直线与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;
    2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;
    3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;
    4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积;
     

    【知识网络】

    【要点梳理】

    要点一圆的定义、性质及与圆有关的角
    1.圆的定义
      (1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.
      (2)圆是到定点的距离等于定长的所有点组成的图形.
    要点诠释:
       圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;
       圆是一条封闭曲线.

    2.圆的性质
      (1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.
        在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.
      (2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.
      (3)垂径定理及推论:
        垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
        平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
        弦的垂直平分线过圆心,且平分弦对的两条弧.
        平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.
        平行弦夹的弧相等.
    要点诠释:
         在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:过圆心、平分弦作为题设时,平分的弦不能是直径)

    3.与圆有关的角
      (1)圆心角:顶点在圆心的角叫圆心角.
        圆心角的性质:圆心角的度数等于它所对的弧的度数.
      (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.
        圆周角的性质:
        圆周角等于它所对的弧所对的圆心角的一半.
        同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.
        90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.
        如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
        圆内接四边形的对角互补;外角等于它的内对角.
    要点诠释:
      (1)圆周角必须满足两个条件:顶点在圆上;角的两边都和圆相交.
      (2)圆周角定理成立的前提条件是在同圆或等圆中.
     

    点二与圆有关的位置关系

    1.判定一个点P是否在O上
      设O的半径为,OP=,则有
      点P在O 外; 点P在O 上;点P在O 内.
    要点诠释:

    点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.

    2.判定几个点在同一个圆上的方法
      当时,O 上.
    3.直线和圆的位置关系
      设O 半径为R,点O到直线的距离为.
      (1)直线O没有公共点直线和圆相离.
      (2)直线O有唯一公共点直线O相切.
      (3)直线O有两个公共点直线O相交.
    4.切线的判定、性质
      (1)切线的判定:
        经过半径的外端并且垂直于这条半径的直线是圆的切线.
        到圆心的距离等于圆的半径的直线是圆的切线.
      (2)切线的性质:
        圆的切线垂直于过切点的半径.
        经过圆心作圆的切线的垂线经过切点.
        经过切点作切线的垂线经过圆心.
      (3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.
      (4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
    要点三三角形的外接圆与内切圆、圆内接四边形与外切四边形
    1.三角形的内心、外心

    (1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用I表示.
      (2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.
    要点诠释:
      (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;
      (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).
      (3) 三角形的外心与内心的区别:

     

    名称

    确定方法

    图形

    性质

    外心(三角形外接圆的圆心)

    三角形三边中垂线的交点

    (1)OA=OB=OC;(2)外心不一定在三角形内部

    内心(三角形内切圆的圆心)

    三角形三条角平分线的交点

    (1)到三角形三边距离相等;(2)OA、OB、OC分别平分BAC、ABC、ACB; (3)内心在三角形内部.

     

    2.圆内接四边形和外切四边形
      (1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.
      (2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.
     

    点四圆中有关计算
    1.圆中有关计算
      圆的面积公式:,周长.
      圆心角为、半径为R的弧长.
      圆心角为,半径为R,弧长为的扇形的面积.
      弓形的面积要转化为扇形和三角形的面积和、差来计算.
      

    要点诠释:
      (1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的


      (2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.
      (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;
      (4)扇形两个面积公式之间的联系:.

    典型例题】

    类型一、圆的有关概念及性质

    1.如图所示,ABC的三个顶点的坐标分别为A(-13)、B (2,-2)C (4,-2),则ABC外接圆半径的长度为          

           

    【答案】

    【解析】由已知得BCx轴,则BC中垂线为
    那么,ABC外接圆圆心在直线x=1上
    设外接圆圆心P(1,a),则由PA=PB=r得到:PA2=PB2
    (1+1)2+(a-3)2=(1+2)2+(a+2)2
    化简得 4+a2-6a+9=9+a2+4a+4
    解得 a=0
    ABC外接圆圆心为P(1,0)

    【总结升华】 三角形的外心是三边中垂线的交点,由B、C的坐标知:圆心P(设ABC的外心为P)必在直线x=1上;由图知:BC的垂直平分线正好经过(1,0),由此可得到P(1,0);连接PA、PB,由勾股定理即可求得P的半径长.

     

    类型二、弧、弦、圆心角、圆周角的关系及垂径定理

    2.如图所示,O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,DEB=60°

    求CD的长.

            

    思路点拨

        作OFCD于F,构造RtOEF,求半径和OF的长;连接OD,构造RtOFD,求CD的长.

    答案与解析

    作OFCD于F,连接OD.  AE=1,EB=5,  AB=6.

             OE=OA-AE=3-1=2.

    在RtOEF中,  DEB=60°  EOF=30°

       

    在RtDFO中,OF=,OD=OA=3,

      (cm).

           OFCD,  DF=CF,  CD=2DF=cm.

                  

    【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.

     

    举一反三:

    变式如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC=         

    答案OM⊥AB,ON⊥AC,得M、N分别为AB、AC的中点(垂径定理),则MN是ABC的中位线,BC=2MN=6.

     

    3.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB = 20°,则∠OCD =     

           

    【答案】65°.

    解析连结OD,则∠DOB = 40°,

    设圆交y轴负半轴于E,得∠DOE= 130°,∠OCD =65°.

    【总结升华】根据同弧所对圆周角与圆心角的关系可求.

    举一反三:

    【变式】2020黑龙江)如图,O的半径是2ABO的弦,点P是弦AB上的动点,且1OP2,则弦AB所对的圆周角的度数是(  )

    A60° B120° C60°120° D30°150°

    答案C.

    解析ODAB,如图,

    P是弦AB上的动点,且1OP2

    OD=1

    ∴∠OAB=30°

    ∴∠AOB=120°

    ∴∠AEB=AOB=60°

    ∵∠E+F=180°

    ∴∠F=120°

    即弦AB所对的圆周角的度数为60°120°.故选C

     

    类型三、与圆有关的位置关系

    4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且ACB=DCE.请判断直线CE与O的位置关系,并证明你的结论.

     

    【答案与解析

    直线CE与O相切

      

     

    理由:连接OE

    OE=OA

    ∴∠OEA=OAE

    四边形ABCD是矩形

    ∴∠B=D=BAD=90°,BCAD,CD=AB

    ∴∠DCE+DEC=90°, ACB=DAC

    DCE=ACB

    ∴∠DEC+DAC=90°

    OE=OA

    ∴∠OEA=DAC

    ∴∠DEC+OEA=90°

    ∴∠OEC=90°

    OEEC

    直线CE与O相切.

    【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.

    举一反三:

    变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).
      (1)求与直线相切时点P的坐标.
      (2)请直接写出与直线相交、相离时x的取值范围.
              

    【答案】(1)过作直线的垂线,垂足为.
          当点在直线右侧时,,得
          (5,7.5).
          当点在直线左侧时,,得
          ().
         与直线相切时,

     的坐标为(5,7.5)或().
                (2)当时,与直线相交.
           时,与直线相离.

     

    类型四、圆中有关的计算

    5.2020丽水)如图,在ABC中,AB=AC,以AB为直径的O分别与BCAC交于点DE,过点DO的切线DF,交AC于点F

    1)求证:DFAC

    2)若O的半径为4CDF=22.5°,求阴影部分的面积.

    答案与解析

    1)证明:连接OD

    OB=OD

    ∴∠ABC=ODB

    AB=AC

    ∴∠ABC=ACB

    ∴∠ODB=ACB

    ODAC

    DFO的切线,

    DFOD

    DFAC

    2)解:连接OE

    DFACCDF=22.5°

    ∴∠ABC=ACB=67.5°

    ∴∠BAC=45°

    OA=OE

    ∴∠AOE=90°

    ∵⊙O的半径为4

    S扇形AOE=4πSAOE=8

    S阴影=4π﹣8

    【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.

     

     

    类型五、圆与其他知识的综合运用

    6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,所在圆的圆心为O.车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).

    思路点拨

        求覆盖棚顶的帆布的面积,就是求以为底面的圆柱的侧面积.根据题意,应先求出所对的圆心角度数以及所在圆的半径,才能求的长.

    答案与解析

    连接OB,过点O作OEAB,垂足为E,交于点F,如图(2).

         由垂径定理,可知E是AB中点,F是的中点,

           ,EF=2.

         设半径为R米,则OE=(R-2)m.

         在RtAOE中,由勾股定理,得

         解得R=4.

           OE=2,  AOE=60°  AOB=120°

           的长为(m).

           帆布的面积为(m2).

    【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,

    这也体现了中考命题贴近学生生活实际的原则.

     

    举一反三:

    变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.
       
      请你补全这个输水管道的圆形截面图;
      若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.

     

    【答案】作法略.如图所示.

         如图所示,过O作OCAB于D,交于C,
          OCAB,
           .
          由题意可知,CD=4cm.
          设半径为x cm,则.
          在RtBOD中,由勾股定理得:
          .
          .
          即这个圆形截面的半径为10cm.
     

     

    相关试卷

    人教版八年级上册第十三章 轴对称13.1 轴对称13.1.1 轴对称练习题: 这是一份人教版八年级上册第十三章 轴对称13.1 轴对称13.1.1 轴对称练习题,共8页。

    初中数学北师大版九年级下册1 圆课时训练: 这是一份初中数学北师大版九年级下册1 圆课时训练,共12页。

    初中数学北师大版九年级下册第三章 圆1 圆达标测试: 这是一份初中数学北师大版九年级下册第三章 圆1 圆达标测试,共9页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        北师大版数学九年级下册《圆》全章复习与巩固—知识讲解(基础)(含答案)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map