北师大版 (2019)选择性必修 第一册3.1 离散型随机变量的均值试讲课ppt课件
展开1.理解离散型随机变量的均值的概念.2.会根据离散型随机变量的分布列求出离散型随机变量的均值.3.掌握离散型随机变量的均值的性质及两点分布、二项分布和超几何分布的均值公式.4.能运用离散型随机变量的均值解决一些简单的实际问题.核心素养:数学运算、数学建模.
思考 已知在10件产品中有2件不合格品.从这10件产品中任取3件,用X表示取得产品中的不合格品的件数.我们可求得X的分布列如下表:
现在我们关心,取3件该产品时,平均会取到几件不合格品?那么,怎样的一个数能够“代表”这个随机变量取值的平均水平呢?
抽象概括设离散型随机变量X的分布列如下表:
(1)均值E(X)刻画的是X取值的“中心位置”,这是随机变量X的一个重要特征,它反映或刻画的是随机变量取值的平均水平.由定义可知离散型随机变量的均值与它的本身有相同的单位. (2)随机变量的均值与样本平均值的关系: 随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本的抽取的不同而变化.对于简单随机抽样,随着样本容量的增加,样本平均值越来越接近于总体的均值.随机变量X的均值反映了离散型随机变量的平均水平.
例3 一个袋子里装有除颜色外完全相同的3个红球和2个黄球,从中同时取出2个,则取出的红球个数的均值是多少?
例4 根据气象预报,某地区近期暴发小洪水的概率为0.25,暴发大洪水的概率为0.01.该地区某工地上有一台大型设备,为保护设备,有以下3种方案:方案1:运走设备,搬运费为3 800元.方案2:建一保护围墙,建设费为2 000元,但围墙只能防小洪水.方案3:不采取措施,希望不发生洪水.此时遇到大洪水时要损失60 000元,遇到小洪水时要损失10 000元.你会选择哪一种方案呢?
离散型随机变量的均值的性质若X,Y是两个随机变量,且Y=aX+b,则有E(Y)=aE(X)+b,即随机变量X的线性函数的均值等于这个随机变量的均值E(X)的同一线性函数.特别地:(1)当a=0时,E(b)=b,即常数的均值就是这个常数本身.(2)当a=1时,E(X+b)=E(X)+b,即随机变量X与常数之和的均值等于X的均值与这个常数的和.(3)当b=0时,E(aX)=aE(X),即常数与随机变量乘积的均值等于这个常数与随机变量的均值的乘积.
解析:X的可能取值为3,2,1,0,P(X=3)=0.6;P(X=2)=0.4×0.6=0.24;P(X=1)=0.42×0.6=0.096;P(X=0)=0.43=0.064.所以E(X)=3×0.6+2×0.24+1×0.096+0×0.064=2.376.
1.某射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X的数学期望为( ) D.2.4
2.已知ξ的分布列如下表,若η=3ξ+2,则E(η)= .
3.口袋里装有大小相同的8张卡片,其中3张标有数字1,3张标有数字2,2张标有数字3.第一次从口袋里任意抽取1张,放回口袋里后第二次再任意抽取1张,记第一次与第二次取到卡片上数字之和为ξ.求:(1)ξ为何值时,其发生的概率最大?并说明理由.(2)随机变量ξ的数学期望E(ξ).
2.离散型随机变量的均值的性质若X,Y是两个随机变量,且Y=aX+b,则有E(Y)=aE(X)+b,则(1)当a=0时,E(b)=b;(2)当a=1时,E(X+b)=E(X)+b;(3)当b=0时,E(aX)=aE(X).
高中北师大版 (2019)3.2 离散型随机变量的方差完美版ppt课件: 这是一份高中北师大版 (2019)3.2 离散型随机变量的方差完美版ppt课件,共21页。PPT课件主要包含了学习目标,情境与问题,新知学习,概念解析,典例剖析,尝试与发现,典例解析,归纳总结,随堂小测,课堂小结等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征教学ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征教学ppt课件,共39页。
高中数学人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征图文课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征图文课件ppt,共29页。