初中数学北师大版八年级上册第七章 平行线的证明4 平行线的性质练习
展开【巩固练习】
一、选择题
1.下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是 ( )
A.① B.②和③ C.④ D.①和④
2.(2020•泰安)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于( )
A.122° B.151° C.116° D.97°
3.下列图形中,由AB∥CD,能得到∠1=∠2的是( )
4.(2016•陕西一模)直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于( )
A.80° B.65° C.60° D.55°
5.如图所示,已知AD与BC相交于点O,CD∥OE∥AB.如果∠B=40°,∠D=30°,则∠AOC的大小为( )
A.60° B.70° C.80° D.120°
6.如图所示,直线l1//l2,∠1=40°,∠2=75°,则∠3等于( )
A.55° B.30° C.65° D.70°
二、填空题
7.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= _______.
8. 如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= ________度.
9.如图所示,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2=______度.
10.(2020•云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α= .
11.(2020春•冷水江市期末)如图,下列推理是否正确,请写出你认为是正确推理的编号 .
①因为AB∥DC,所以∠ABC+∠C=180°
②因为∠1=∠2,所以AD∥BC
③因为AD∥BC,所以∠3=∠4
④因为∠A+∠ADC=180°,所以AB∥DC.
12.如图所示,AB∥CD,且∠BAP=60°-a,∠APC=45°+a,∠PCD=30°-a,则a=________.
三.解答题
13.如图,已知AB∥CD,MG、NH分别平分∠BMN与∠CNM,试说明NH∥MG?
14. 如图,a∥b∥c,∠1=60°,∠2=36°,AP平分∠BAC,求∠PAQ的度数.
15.(2020春•晋安)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
【答案与解析】
一.选择题
1. 【答案】A;
【解析】两直线平行角的关系.
2. 【答案】B;
【解析】∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,
∵FG平分∠EFD,∴∠GFD=∠EFD=×58°=29°,
∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选B.
3. 【答案】B;
【解析】∠2与∠1的对顶角是同位角的关系.
4. 【答案】D;
【解析】∵∠1=100°,∠2=100°,∴∠1=∠2,∴直线a∥直线b,∴∠4=∠5,
∵∠3=125°,∴∠4=∠5=180°﹣∠3=55°,故选D.
5. 【答案】B
【解析】注意到CD∥OE∥AB,由“两直线平行,同位角相等”可知∠AOE=∠D=
30°,∠EOC=∠B=40°.故∠AOC=∠EOC+∠AOE=40°+30°=70°.
6. 【答案】C;
【解析】∠3=180°-40°-75°=65°.
二、填空题
7.【答案】115°;
【解析】∵四边形ABCD是矩形,
∴AD∥BC,
∴∠2=∠DEG=∠1+∠FEG=115°.
故答案为:115°.
8.【答案】36°;
【解析】∵AB∥DC,DE∥GF,∠B=∠F=72°,
∴∠DCE=∠B=72°,∠DEC=∠F=72°,
在△CDE中,∠D=180°-∠DCE-∠DEC=180°-72°-72°=36°.
故答案为:36.
9.【答案】60;
【解析】由已知得:∠2=2∠1=60°.
10.【答案】64°;
【解析】由已知可得:AD∥BC,由平行的性质可得:
∠D+∠C=180°.
如图,
∵∠1+56°=120°,
∴∠1=120°﹣56°=64°,
又∵直线l1∥l2,
∴∠α=∠1=64°.
故答案为:64°.
11. 【答案】①②④
【解析】①∵AB∥DC,∴∠ABC+∠C=180°,此结论正确;
②∵∠1=∠2,∴AD∥BC,此结论正确;
③∵AD∥BC,∴∠1=∠2,而∠3≠∠4,此结论错误,
④∵∠A+∠ADC=180°,∴AB∥DC,此结论正确.故答案为①②④.
12.【答案】15°;
【解析】由图可知:∠APC=∠BAP+∠PCD,即有45°+a=60°-a+30°-a,
解得:a=15°.
三、解答题
13.【解析】
证明:∵AB∥CD(已知),∴ ∠BMN=∠MNC(两直线平行,内错角相等).
∵MG、NH分别平分∠BMN、∠CNM(已知).
∴∠MNH=∠MNC,∠NMG=∠BMN(角平分线定义).
∴∠MNH=∠NMG,∴ NH∥MG(内错角相等,两直线平行).
14.【解析】
解:∵a∥b∥c,
∴∠BAQ=∠1=60°,∠CAQ=∠2=36°,∠BAC=60°+36°=96°,
又AP平分∠BAC,∠BAP=×96°=48°,
∴∠PAQ=∠BAQ-∠BAP=60°-48°=12°.
15.【解析】
解:(1)∵CB∥OA,
∴∠AOC=180°﹣∠C=180°﹣100°=80°,
∵OE平分∠COF,
∴∠COE=∠EOF,
∵∠FOB=∠AOB,
∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;
(2)∵CB∥OA,
∴∠AOB=∠OBC,
∵∠FOB=∠AOB,
∴∠FOB=∠OBC,
∴∠OFC=∠FOB+∠OBC=2∠OBC,
∴∠OBC:∠OFC=1:2,是定值;
(3)在△COE和△AOB中,
∵∠OEC=∠OBA,∠C=∠OAB,
∴∠COE=∠AOB,
∴OB、OE、OF是∠AOC的四等分线,
∴∠COE=∠AOC=×80°=20°,
∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,
故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.
人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.1 平行线的性质精品当堂达标检测题: 这是一份人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.1 平行线的性质精品当堂达标检测题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中北师大版第四章 一次函数1 函数达标测试: 这是一份初中北师大版第四章 一次函数1 函数达标测试,共4页。试卷主要包含了 直线过点, 下列函数中,是正比例函数的是, 【答案】D;, 【答案】;-3;等内容,欢迎下载使用。
北师大版八年级上册1 函数练习: 这是一份北师大版八年级上册1 函数练习,共6页。