![专题06 半角模型综合应用(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(原卷版)第1页](http://www.enxinlong.com/img-preview/2/3/14076731/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题06 半角模型综合应用(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(原卷版)第2页](http://www.enxinlong.com/img-preview/2/3/14076731/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题06 半角模型综合应用(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(原卷版)第3页](http://www.enxinlong.com/img-preview/2/3/14076731/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题06 半角模型综合应用(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(解析版)第1页](http://www.enxinlong.com/img-preview/2/3/14076731/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题06 半角模型综合应用(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(解析版)第2页](http://www.enxinlong.com/img-preview/2/3/14076731/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题06 半角模型综合应用(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(解析版)第3页](http://www.enxinlong.com/img-preview/2/3/14076731/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:备战中考数学《重难点解读•专项训练》(全国通用)
专题06 半角模型综合应用(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)
展开
这是一份专题06 半角模型综合应用(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题06半角模型综合应用知识解读-备战中考数学《重难点解读•专项训练》全国通用解析版docx、专题06半角模型综合应用知识解读-备战中考数学《重难点解读•专项训练》全国通用原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
专题06 半角模型综合应用(知识解读)【专题说明】角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。【方法技巧】类型一:等腰直角三角形角含半角模型(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD+CE=DE. 旋转法 翻折法 作法1:将△ABD旋转90° 作法2:分别翻折△ABD,△ACE(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD+CE=DE. (3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..任意等腰三角形 类型二:正方形中角含半角模型(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD. 图示(1) 作法:将△ABE绕点A逆时针旋转90°(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE. 图示(2) 作法:将△ABE绕点A逆时针旋转90° (3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=∠BAD,连接EF,则:EF=BE+DF.图示(3) 作法:将△ABE绕点A逆时针旋转∠BAD的大小 类型三:等边三角形中120°含60°的半角模型 作辅助线:延长FC到G,使得CG=BE,连接DG结论:▲DEF≌▲DGF;EF=BE+CF 【典例分析】【类型一:等腰直角三角形角含半角模型】【典例1】如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,若将△ABC绕着点C逆时针旋转90°得△EDC.(1)求证:∠ADC+∠CDE=180°;(2)若AB=3cm,AC=,求AD的长;(3)在(2)的条件下,求四边形ABCD的周长和面积. 【变式1-1】如图,Rt△ABC中,∠BAC=90°,AB=AC,D、E为BC边上两点,∠DAE=45°,过A点作AF⊥AE,且AF=AE,连接DF、BF.下列结论:①△ABF≌△ACE,②AD平分∠EDF;③若BD=4,CE=3,则AB=6;④若AB=BE,S△ABD=,其中正确的个数有( )A.1个 B.2个 C.3个 D.4个【变式1-2】如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为 .【类型二:正方形中角含半角模型】【典例2】(2022春•西山区校级月考)如图,已知正方形ABCD,点E、F分别是AB、BC边上,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:△EDF≌△MDF;(2)若正方形ABCD的边长为5,AE=2时,求EF的长? 【变式2-1】(2022春•路北区期末)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为 .【变式2-2】(2021秋•山西期末)阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为45°的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:如图1,在正方形ABCD中,以A为顶点的∠EAF=45°,AE、AF与BC、CD边分别交于E、F两点.易证得EF=BE+FD.大致证明思路:如图2,将△ADF绕点A顺时针旋转90°,得到△ABH,由∠HBE=180°可得H、B、E三点共线,∠HAE=∠EAF=45°,进而可证明△AEH≌△AEF,故EF=BE+DF.任务:如图3,在四边形ABCD中,AB=AD,∠B=∠D=90°,∠BAD=120°,以A为顶点的∠EAF=60°,AE、AF与BC、CD边分别交于E、F两点.请参照阅读材料中的解题方法,你认为结论EF=BE+DF是否依然成立,若成立,请写出证明过程;若不成立,请说明理由. 【典例3】已知正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系: ;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,AH=6,求NH的长.(可利用(2)得到的结论) 【变式3-1】探究:(1)如图1,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,试判断BE、DF与EF三条线段之间的数量关系,直接写出判断结果: ;(2)如图2,若把(1)问中的条件变为“在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF绕点A逆时针旋转,当点分别E、F运动到BC、CD延长线上时,如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明. 【变式3-2】已知:如图边长为2的正方形ABCD中,∠MAN的两边分别交BC、CD边于M、N两点,且∠MAN=45°①求证:MN=BM+DN;②若AM、AN交对角线BD于E、F两点.设BF=y,DE=x,求y与x的函数关系式. 【类型三:等边三角形中120°含60°的半角模型】【典例4】已知在△ABC中,AB=AC,D,E是BC边上的点,将△ABD绕点A旋转,得到△ACD',连接D'E.(Ⅰ)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D'E;(Ⅱ)如图2,当DE=D'E时,请写出∠DAE与∠BAC的数量关系,并说明理由.(Ⅲ)当∠BAC=90°,DE=D'E,EC=CD'时,请直接写出BD与DE的数量关系(不必说明理由). 【变式4-1】(2017秋•锦江区期末)在△ABC中,AB=AC,点E,F是边BC所在直线上与点B,C不重合的两点.(1)如图1,当∠BAC=90°,∠EAF=45°时,直接写出线段BE,CF,EF的数量关系;(不必证明)(2)如图2,当∠BAC=60°,∠EAF=30°时,已知BE=3,CF=5,求线段EF的长度;(3)如图3,当∠BAC=90°,∠EAF=135°时,请探究线段CE,BF,EF的数量关系,并证明. 【变式4-2】等边△ABC,D为△ABC外一点,∠BDC=120°,BD=DC,∠MDN=60°,射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,①当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系.②当点M、N在边AB、AC上,且DM≠DN时,猜想①中的结论还成立吗?若成立,请证明.③当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系.
相关试卷
这是一份专题10 截长补短模型综合应用(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题10截长补短模型综合应用知识解读-备战中考数学《重难点解读•专项训练》全国通用解析版docx、专题10截长补短模型综合应用知识解读-备战中考数学《重难点解读•专项训练》全国通用原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份专题06 半角模型综合应用(专项训练)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题06半角模型综合应用专项训练解析版docx、专题06半角模型综合应用专项训练原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份专题06 半角模型综合应用(专项训练)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题06半角模型综合应用专项训练解析版docx、专题06半角模型综合应用专项训练原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/ed4b79351ae3a39596034d4bbb94b742.jpg)