- 专题09 基本平面图形 重难点题型13个-七年级数学上册重难题型全归纳及技巧提升专项精练(北师大版) 试卷 8 次下载
- 专题10 线段中的四种动点问题与四种数学思想 专项讲练-七年级数学上册重难题型全归纳及技巧提升专项精练(北师大版) 试卷 7 次下载
- 第四章 基本平面图形 章末检测卷-七年级数学上册重难题型全归纳及技巧提升专项精练(北师大版) 试卷 6 次下载
- 专题12 一元一次方程 重难点题型12个-七年级数学上册重难题型全归纳及技巧提升专项精练(北师大版) 试卷 8 次下载
- 专题13 一元一次方程的应用(12大题型)专项讲练-七年级数学上册重难题型全归纳及技巧提升专项精练(北师大版) 试卷 7 次下载
初中数学北师大版七年级上册4.3 角优秀当堂达标检测题
展开【与角相关的旋转问题】
【解题技巧】
1、角度旋转问题解题步骤:
①找——根据题意找到目标角度;
②表——表示出目标角度:
1)角度一边动另一边不动,角度变大:目标角=起始角+速度×时间;
2)角度一边动另一边不动,角度变小:目标角=起始角—速度×时间;
3)角度一边动另一边不动,角度先变小后变大:
变小:目标角=起始角—速度×时间;变大:目标角=速度×时间—起始角
③列——根据题意列方程求解。
注:①注意题中是否确定旋转方向,未确定时要分顺时针与逆时针分类讨论;②注意旋转角度取值范围。
常见的三角板旋转的问题:三角板有两种,一种是等腰直角三角板(90°、45°、45°),另一种是特殊角的直角三角板(90°、60°、30°)。三角板的旋转中隐藏的条件就是上面所说的这几个特殊角的角度。
总之不管这个角如何旋转,它的角度大小是不变的,旋转的度数就是组成角的两条射线旋转的度数(角平分线也旋转了同样的度数)。抓住这些等量关系是解题的关键,三角板只是把具体的度数隐藏了起来。
【重要题型】
题型1:求值问题
例1.(2022·江苏·七年级期中)已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)
(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ= ;②当α=80°时,如图2,求∠POQ的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;
(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ= ,(请用含m、n的代数式表示).
变式1.(2022•高新区期末)已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:
(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则
①∠AOC+∠BOD= ;②∠BOC﹣∠AOD= .
(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).
(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.
变式2.(2022•浙江七年级期中)如图1,为直线上一点,过点作射线,,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方.(注:本题旋转角度最多.)
(1)将图1中的三角板绕点以每秒的速度沿顺时针方向旋转.如图2,经过秒后,______度(用含的式子表示),若恰好平分,则______秒(直接写结果).
(2)在(1)问的基础上,若三角板在转动的同时,射线也绕点以每秒的速度沿顺时针方向旋转,如图3,经过秒后,______度(用含的式子表示)若平分,求为多少秒?
(3)若(2)问的条件不变,那么经过秒平分?(直接写结果)
题型2:定值问题(角度不变问题)
例2.(2022·江苏南京·七年级期末)如图,两条直线AB,CD相交于点O,且∠AOC=∠AOD,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s,运动时间为t秒(0<t<12,本题出现的角均小于平角)
(1)图中一定有 个直角;当t=2时,∠MON的度数为 ,∠BON的度数为 ;
(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;
(3)当射线OM在∠COB内部,且是定值时,求t的取值范围,并求出这个定值.
变式1.(2022•渝中区七年级期中)如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC= °;(2)如图2,∠COD从第(1)问中的位置出发,绕点O逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.
变式2.(2022•碑林区七年级开学)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请直接写出结论:直线ON (平分或不平分)∠AOC.
(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 .(直接写出结果)
(3)将图1中的三角板绕点O顺时针旋转,请探究,当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.
题型3:探究类问题(判断角的数量之间的关系)
例3.(2022·四川·成都市七年级期末)如图所示:点是直线上一点,∠是直角,平分∠.
(1)如图1,若∠=40°,求∠的度数;(2)如图1,若∠=,直接写出∠的度数(用含的代数式表示);(3)保持题目条件不变,将图1中的∠按顺时针方向旋转至图2所示的位置,探究∠和∠的度数之间的关系,写出你的结论,并说明理由.
变式1.(2022·广东七年级期中)如图(a),将两块直角三角尺的直角顶点C叠放在一起.
(1)若∠DCE=25°,∠ACB 等于多少;若∠ACB=130°,则∠DCE 等于多少;
(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;
(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.
变式2.(2022•喀喇沁旗七年级期中)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使点N在OC的反向延长线上,请直接写出图中∠MOB的度数;(2)将图1中的三角板绕点O顺时针旋转至图3,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON在∠AOC内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
题型4:分类讨论问题
例4.(2022·成都市七中育才学校七年级月考)一副三角板(直角三角板和直角三角板)如图1所示放置,两个顶点重合于点,与重合,且,,,.将三角板绕着点逆时针旋转一周,旋转过程中,平分,平分,(和均是指小于180°的角)探究的度数.
(1)当三角板绕点旋转至如图2的位置时,与重合,______°,______°.
(2)三角板绕点旋转过程中,的度数还有其他可能吗?如果有,请研究证明结论,若没有,请说明理由.(3)类比拓展:当的度数为时,其他条件不变,在旋转过程中,请直接写出的度数.(用含的式子来表示)
变式1.(2022•广东七年级期末)如图(1),∠BOC和∠AOB都是锐角,射线OB在∠AOC内部,,.(本题所涉及的角都是小于180°的角)
(1)如图(2),OM平分∠BOC,ON平分∠AOC,填空:
①当,时,______,______,______;
②______(用含有或的代数式表示).
(2)如图(3),P为∠AOB内任意一点,直线PQ过点O,点Q在∠AOB外部:
①当OM平分∠POB,ON平分∠POA,∠MON的度数为______;
②当OM平分∠QOB,ON平分∠QOA,∠MON的度数为______;
(∠MON的度数用含有或的代数式表示)
(3)如图(4),当,时,射线OP从OC处以5°/分的速度绕点O开始逆时针旋转一周,同时射线OQ从OB处以相同的速度绕点O逆时针也旋转一周,OM平分∠POQ,ON平分∠POA,那么多少分钟时,∠MON的度数是40°?
变式2.(2022·成都市七年级阶段练习)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角,如图1,若,则是的内半角.
(1)如图1,已知,,是的内半角,则________;
(2)如图2,已知,将绕点按顺时针方向旋转一个角度得,当旋转的角度为何值时,是的内半角;
(3)已知,把一块含有角的三角板如图3叠放,将三角板绕顶点以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线,,,能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.
【折叠(翻折)问题】
【解题技巧】
折叠前后对应角、对应边相等;出现角的比值或无角的具体度数却求度数常设列方程。在旋转问题中求解角度是初一数学的难点题型,需要熟悉并灵活运用角度求解的方法,本文就例题详细解析这类题型的解题思路,希望能给初一学生的数学学习带来帮助。
解决本题的关键是根据题目给出的角度或角与角之间的关系,确定射线旋转的角度,再根据射线的旋转速度,就可以求得射线旋转的时间,特别要注意在角的两边所处位置不明确的情况下,必须要考虑多解的可能。
例1.(2022·山东东营·期末)如图,长方形纸片,点、分别在边、上,连接.将对折,点落在直线上的点处,得折痕;将对折,点落在直线上的点处,得折痕.则的度数为( )
A.B.C.D.不能确定
变式1.(2022·辽宁沈阳·七年级期末)将一张长方形纸片按如图所示方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若,则的度数为( )
A.40.5°B.41°C.41.5°D.42°
例2.(2022·辽宁西丰县·七年级期中)利用折纸可以作出角平分线.
(1)如图1,若∠AOB=58°,则∠BOC= .
(2)折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A′,点B落在点B',连接OA'.
①如图2,当点B'在OA'上时,判断∠AOC与∠BOD的关系,并说明理由;
②如图3,当点B'在∠COA'的内部时,连接OB',若∠AOC=44°,∠BOD=61°,求∠A'OB'的度数.
变式2.(2022·湖南长沙·七年级月考)已知长方形纸片ABCD, E、F分别是AD、AB上的一点,点I在射线BC上、连接EF,FI,将∠A沿EF所在的直线对折,点A落在点H处,∠B沿FI所在的直线对折,点B落在点G处.(1)如图1,当HF与GF重合时,则∠EFI=_________°;
(2)如图2,当重叠角∠HFG=30°时,求∠EFI的度数;
(3)如图3,当∠GFI=α,∠EFH=β时,∠GFI绕点F进行逆时针旋转,且∠GFI总有一条边在∠EFH内,PF是∠GFH的角平分线,QF是∠EFI的角平分线,旋转过程中求出∠PFQ的度数(用含α,β的式子表示).
课后专项训练
1.(2022·四川成都市·成都实外)如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若∠BFE=3∠BFH,∠BFH=20°,则∠GFH的度数是( )
A.85°B.90°C.95°D.100°
2.(2022·成都市初一月考)如图,将一张长方形纸片的角A、E分别沿着BC、BD折叠,点A落在A'处,点E落在边BA'上的E'处,则∠CBD的度数是( )
A.85°B.90°C.95°D.100°
3.(2022·重庆七年级期中)如图,将一张长方形纸片ABCD沿对角线BD折叠后,点C落在点E处,连接BE交AD于F,再将三角形DEF沿DF折叠后,点E落在点G处,若DG刚好平分∠ADB,那么∠ADB的度数是( )
A.18°B.20°C.36°D.45°
4.(2022·黑龙江·七年级期末)请仔细观察如图所示的折纸过程,然后回答下列问题:
(1)的度数为__________;(2)与有何数量关系:______;
(3)与有何数量关系:__________;
5.(2022·广东南山区·蛇口育才二中七年级期中)如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板(∠M=30°)的直角顶点放在点O处,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.
(1)几秒后ON与OC重合?(2)如图2,经过 秒后,MN∥AB;(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC与OM重合?请并说明理由.(4)在(3)的条件下,求经过多长时间OC平分∠MOB?请说明理由.
6.(2022•镇海区七年级期中)新定义问题
如图①,已知∠AOB,在∠AOB内部画射线OC,得到三个角,分别为∠AOC、∠BOC、∠AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为∠AOB的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)
【阅读理解】(1)角的平分线 这个角的“幸运线”;(填“是”或“不是”)
【初步应用】(2)如图①,∠AOB=45°,射线OC为∠AOB的“幸运线”,则∠AOC的度数为 ;
【解决问题】(3)如图②,已知∠AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t秒(0<t<9).若OM、ON、OA三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.
7.(2022•香坊区七年级期中)如图,点O为直线AB上一点,∠AOC=90°,在直线AB上方有射线OM、ON分别从OA和OC开始绕点O顺时针旋转,旋转过程中始终保持∠AOM=2∠CON,OQ平分∠AON.
(1)如图1,证明:ON平分∠MOB;(2)如图2,在旋转过程中,当∠CON=2∠MOQ时,求∠CON的度数;(3)如图3,在旋转过程中,∠AOM是锐角,射线OD在∠MON内部,∠MOD=30°,OP平分∠MON,∠MOQ:∠POD=m,∠NOB:∠QOC=n,在AB下方有射线OT,∠AOT=90°﹣(m+n)°,∠BOT+∠MOQ=110°,求∠AOM的度数
8.(2022·重庆八中七年级期末)一副三角板按如图1所示放置,边在直线上,.
(1)求图1中的度数;(2)如图2,将三角板绕点O顺时针旋转,转速为,同时将三角板绕点O逆时针旋转,转速为,当旋转到射线上时,两三角板都停止转动.设转动时间为.
①在范围内,当时,求t的值;
②如图3,旋转过程中,作的角平分线,当时.直接写出时间的值.
9.(2022·安徽·宿城第一初级中学七年级期中)以直线上一点为端点作射线,使,将一个直角三角板的直角顶点放在处,即.
(1)如图1,若直角三角板的一边放在射线上,则______;
(2)如图2,将直角三角板绕点顺时针转动到某个位置,①若恰好平分,则______;②若在内部,请直接写出与的数量关系为______;
(3)将直角三角板绕点顺时针转动(与重合时为停止)的过程中,恰好有,求此时的度数.
10.(2022·福建福州·七年级期末)在一次数学活动课上,李磊同学将一副宜角三角板、按如图1放置,点A、C、D在同一直线上,(°、),并将三角板绕点A顺时针旋转一定角度,且始终保持.
(1)在旋转过程中,如图2,当点A、C、E在同一直线上时,则____;
(2)在旋转过程中,如图3,当时.请说明平分;
(3)在旋转过程中,如图4,当时,求此时的度数.
11.(2022·山东·烟台市福山区教学研究中心期中)如图,将一副三角板放到一起可以擦除怎样的数学火花呢?福山区某学校两个数学兴趣小组对一副三角板进行了以下两种方式的摆放组合.已知一副三角板重合的顶点记为点O,作射线OE平分∠AOC,射线OF平分∠BOD,来研究一下45°三角板不动,30°三角板绕重合的顶点O旋转时,∠EOF的度数如何变化.
【A组研究】在同一平面内,将这副三角板的的两个锐角顶点重合(图中点O),此时∠AOB=45°,∠COD=30°将三角板OCD绕点O转动.
(1)如图①,当射线OB与OC重合时,则∠EOF的度数为___________;
(2)如图②,将∠COD绕着点O顺时针旋转,设,∠EOF的度数是否发生变化?如果不变,请根据图②求出∠EOF的度数;如果变化,请简单说明理由.
【B组研究】在同一平面内,将这副直角三角板中的一个直角顶点和一个锐角顶点重合(图中点O),此时∠AOB=90°,∠COD=30°,将三角板OCD绕点O转动.
(3)如图③,当三角板OCD摆放在三角板AOB内部时,则∠EOF的度数为___________;
(4)如图④,当三角板OCD转动到三角板AOB外部,设∠BOC=β,∠EOF的度数是否发生变化?如果不变,请根据图④求出∠EOF的度数;如果变化,请简单说明理由.
12.(2022·贵州遵义·七年级期末)【阅读理解】在学习《角的比较与运算》内容时,教材设置这样的一个探究:借助三角尺拼出15°,75°的角,即通过一副三角尺可以拼出一些特殊度数的角.
(1)【实践】在度数分别为①135°,②120°,③105°,④25°的角中,小明同学利用一副三角尺拼不出来的是__________.(填序号)
(2)【操作】七(1)班数学学习小组用一副三角尺进行拼角.如图1,巧巧把30°和90°的角拼在一起,如图2,嘉琪把60°和90°的角拼在一起,他们两人各自所拼的两个角均在公共边OC的异侧,并在各自所拼的图形中分别作出的平分线OE和的平分线OF.
【探究】通过上述操作,巧巧计算出图1中的,请你直接写出图2中的__________°.
(3)【发现】当有公共顶点的两个角和有一条边重合,且这两个角在公共边的异侧时,这两个角的平分线的夹角的度数是__________(用含,的代数式表示).
(4)【拓展】巧巧把图1中的三角尺AOB绕点O顺时针旋转90°到图3的位置,使O,D,B三点在同一条直线上,并求出了的度数为.嘉琪把图2中的三角尺AOB绕点O顺时针旋转90°到图4的位置,使O,D,B三点在同一条直线上.请你仿照巧巧的做法,求出图4中的度数.
(5)【归纳】根据上述探究,可以归纳出:当有公共顶点的两个角和有(其中)有一条边重合,且这两个角在公共边的同侧时,这两个角的平分线的夹角的度数是__________(用含,的代数式表示).
13.(2022·四川资阳·七年级期末)如图-1,点O为直线上一点,过点O作射线,使,将一直角三角板的直角顶点放在点O处,一直角边在射线上,另一边在直线的下方.
(1)如图-2,将图-1中的三角形绕点O逆时针旋转,使一边在的内部,且恰好平分,此时直线是否平分?请说明理由;
(2)如图-3,继续将图-2中三角板绕点O逆时针旋转,使得在的内部,探究与之间的数量关系,并说明理由;
(3)将图-1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转过程中,若直线恰好平分,此时三角板绕点O旋转的时间是多少秒?
14.(2022·四川成都·七年级期末)【阅读理解】
定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P在直线l上,射线PR,PS,PT位于直线l同侧,若PS平分∠RPT,则有∠RPT=2∠RPS,所以我们称射线PR是射线PS,PT的“双倍和谐线”.
【迁移运用】(1)如图1,射线PS (选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT (选填“是”或“不是”)射线PS,PR的“双倍和谐线”;
(2)如图2,点O在直线MN上,OAMN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.
①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;
②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数.
15.(2022·四川成都·七年级期末)如图1,点O为直线AB上一点,过点O作射线OC,OM,ON,ON始终在OM的右侧,∠BOC=112°,∠MON=α.
(1)如图1,当α=70°,OM平分∠BOC时,求∠NOB的度数;
(2)如图2,当OM与OB边重合,ON在OB的下方时,α=80°,将∠MON绕O点按每秒4°的速度沿逆时针方向旋转n(0°<n<180°),使射线ON与∠BOC的角平分线形成夹角为30°,求此时旋转一共用了多少秒;
(3)当∠MON在直线AB上方时,若α=90°,点F在射线OB上,射线OF绕点O顺时针旋转n度(0°<n<180°),恰好使得∠FOA=2∠AOM,OH平分∠NOC,∠FOH=124°,请直接写出此时n的值.
16.(2022·广东茂名·七年级期末)已知:∠AOB=60°,∠COD=90°,OM、ON分别平分∠AOC、∠BOD.
(1)如图1,OC在∠AOB内部时,∠AOD+∠BOC= ,∠BOD﹣∠AOC= ;
(2)如图2,OC在∠AOB内部时,求∠MON的度数;
(3)如图3,∠AOB,∠COD的边OA、OD在同一直线上,将∠AOB绕点O以每秒3°的速度逆时针旋转直至OB边第一次与OD边重合为止,整个运动过程时间记为t秒.若∠MON=5∠BOC时,求出对应的t值及∠AOD的度数.
人教版七年级上册4.3.1 角课后测评: 这是一份人教版七年级上册4.3.1 角课后测评,文件包含七年级数学上册专题13与角相关的旋转翻折问题专项讲练原卷版docx、七年级数学上册专题13与角相关的旋转翻折问题专项讲练解析版docx等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。
人教版七年级上册1.2.2 数轴当堂检测题: 这是一份人教版七年级上册1.2.2 数轴当堂检测题,文件包含七年级数学上册专题04数轴中的动点问题专项讲练-2022-2023学年七年级数学上册重难题型全归纳及技巧提升专项精练人教版原卷版docx、七年级数学上册专题04数轴中的动点问题专项讲练-2022-2023学年七年级数学上册重难题型全归纳及技巧提升专项精练人教版解析版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
初中数学北师大版七年级上册4.2 比较线段的长短随堂练习题: 这是一份初中数学北师大版七年级上册4.2 比较线段的长短随堂练习题,文件包含专题10线段中的四种动点问题与四种数学思想专项讲练解析版docx、专题10线段中的四种动点问题与四种数学思想专项讲练原卷版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。