![人教版数学九年级下册同步讲义第1课反比例函数(教师版)第1页](http://www.enxinlong.com/img-preview/2/3/14079249/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学九年级下册同步讲义第1课反比例函数(教师版)第2页](http://www.enxinlong.com/img-preview/2/3/14079249/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学九年级下册同步讲义第1课反比例函数(教师版)第3页](http://www.enxinlong.com/img-preview/2/3/14079249/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版数学九年级下册同步讲义(教师版+原卷版)
初中数学人教版九年级下册第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数课后练习题
展开
这是一份初中数学人教版九年级下册第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数课后练习题,共15页。试卷主要包含了 反比例函数的图象特征,画反比例函数的图象的基本步骤,反比例函数的性质等内容,欢迎下载使用。
第1课 反比例函数 课程标准1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.4. 会解决一次函数和反比例函数有关的问题. 知识点01 反比例函数的定义一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.要点诠释:(1)在中,自变量是分式的分母,当时,分式无意义,所以自变量的取值范围是,函数的取值范围是.故函数图象与轴、轴无交点.(2) ()可以写成()的形式,自变量的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3) ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数,从而得到反比例函数的解析式.知识点02 确定反比例函数的关系式 确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式. 用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为: ();(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数的值; (4)把求得的值代回所设的函数关系式 中.知识点03 反比例函数的图象和性质
1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与轴、轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点()在反比例函数的图象上,则点()也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(为常数,) 中,由于,所以两个分支都无限接近但永远不能达到轴和轴.2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由的符号决定的:当时,两支曲线分别位于第一、三象限内,当时,两支曲线分别位于第二、四象限内. 3、反比例函数的性质(1)如图1,当时,双曲线的两个分支分别位于第一、三象限,在每个象限内,值随值的增大而减小; (2)如图2,当时,双曲线的两个分支分别位于第二、四象限,在每个象限内,值随值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出的符号.知识点04 比例系数K的几何意义过双曲线() 上任意一点作轴、轴的垂线,所得矩形的面积为.过双曲线() 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为. 要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的. 考法01 反比例函数定义【典例1】当为何值时是反比例函数?【思路点拨】根据反比例函数解析式,也可以写成的形式,后一种表达方法中的次数为-1,由此可知函数是反比例函数,要具备的两个条件为且,二者必须同时满足,缺一不可.【答案与解析】解:令由①得,=±1,由②得,≠1.综上,=-1,即=-1时,是反比例函数.【总结升华】反比例函数解析式的三种形式:①;②;③. 考法02 确定反比例函数解析式【典例2】正比例函数y=2x与双曲线的一个交点坐标为A(2,m).(1)求出点A的坐标;(2)求反比例函数关系式. 【答案与解析】解:(1)将A点坐标是(2,m)代入正比例y=2x中,得:m=4,则A(2,4);(2)将A(2,4)代入反比例解析式中,得:4=,即k=8,则反比例函数解析式y=.【总结升华】此题考查了反比例函数与一次函数的交点问题,利用了待定系数法,熟练掌握待定系数法是解本题的关键. 【即学即练1】已知,与成正比例,与成反比例,且当=1时,=7;当=2时,=8.(1) 与之间的函数关系式;(2)自变量的取值范围;(3)当=4时,的值.【答案】解:(1)∵ 与成正比例,∴ 设.∵ 与成反比例,∴ 设.∴ .把与分别代入上式,得∴ 所以与的函数解析式为.(2)自变量的取值范围是≠0.(3)当=4时,.考法03 反比例函数的图象和性质【典例3】正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是( )A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【思路点拨】由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.【答案】B. 【解析】解:∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.【总结升华】本题考查了反比例函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标.本题属于基础题,难度不大,根据正、反比例的对称性求出点A的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集. 【即学即练2】已知四个函数y=﹣x+1,y=2x﹣1,y=﹣,y=,其中y随x的增大而减小的有( )个. A.4 B. 3 C. 2 D. 1 【答案】D;提示:解:y=﹣x+1中k=﹣1<0,所以y随x的增大而减小,正确;y=2x﹣1中k=2>0,所以y随x的增大而增大,故本选项,错误;y=﹣是反比例函数,其增减性必须强调在双曲线的每一支上,故错误;y=是反比例函数,其增减性必须强调在双曲线的每一支上,故错误.故选D.考法04 反比例函数综合 【典例4】如图所示,反比例函数的图象与一次函数的图象交于M(2,),N(-1,-4)两点.(1)求反比例函数和一次函数的关系式;(2)根据图象写出使反比例函数的值大于一次函数值的的取值范围. 【思路点拨】(1)由点N的坐标为(-1,-4),根据待定系数法可求反比例函数的关系式.从而求出点M的坐标.再根据M、N的坐标,用待定系数法可求出一次函数的关系式;(2)结合图象位置和两交点的坐标,可得到使反比例函数大于一次函数的值的的取值范围.【答案与解析】解:(1)设反比例函数的关系式为.由N(-1,-4),得,∴ =4.∴ 反比例函数的关系式为.∵ 点M(2,)在双曲线上,∴ .∴ 点M(2,2).设一次函数的关系式为,由M(2,2)、N(-1,-4),得 解得∴ 一次函数的关系式为.(2)由图象可知,当<-1或0<<2时,反比例函数的值大于一次函数的值.【总结升华】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数的解析式.也考查了待定系数法确定函数解析式以及观察函数图象的能力. 【即学即练3】如图所示,已知正比例函数的图象与反比例函数的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?(3)M()是反比例函数图象上的一动点,其中0<<3,过点M作直线MB ∥轴,交轴于点B;过点A作直线AC∥轴交轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.【答案】解:(1)将A(3,2)分别代入,中,得,3=2.∴ =6,.∴ 反比例函数的表达式为,正比例函数的表达式为.(2)观察图象,在第一象限内,当0<<3时,反比例函数的值大于正比例函数的值.(3)BM=DM.理由:∵ ,∴ ,即OC·OB=12.∵ OC=3,∴ OB=4,即=4.∴ .∴ ,.∴ MB=MD. 题组A 基础过关练1. 在反比例函数的图象上有两点A,B,当时,有,则的取值范围是( ) A. B. C. D.【答案】C;【解析】由题意画出图象,只能在一、三象限,故. 2. 如图所示的图象上的函数关系式只能是( ) .A. B. C. D. 【答案】D;【解析】画出的图象,再把轴下方的图象翻折上去.3. 已知,点P()在反比例函数的图像上,则直线不经过的象限是( ).A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】C;【解析】由题意,故>0,直线经过一、二、四象限.4. 在函数(为常数)的图象上有三个点,,,则函数值、、的大小关系是( ).A.<< B.<< C.<< D.<<【答案】D;【解析】,故图象在二、四象限,画出图象,比较大小得D答案.5. 如图,直线x=t(t>0)与反比例函数y=(x>0)、y=(x>0)的图象分别交于B、C两点,A为y轴上任意一点,△ABC的面积为3,则k的值为( ) A.2 B.3 C.4 D.5【答案】D;【解析】解:由题意得,点C的坐标(t,﹣),点B的坐标(t,),BC=+,则(+)×t=3,解得k=5,故选:D. 6. 如图,点A、C为反比例函数y=图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当△AEC的面积为时,k的值为( )A.4 B.6 C.﹣4 D.﹣6【答案】C.【解析】设点C的坐标为(m,),则点E(m,),A(m,),∵S△AEC=BD•AE=(m﹣m)•(﹣)=﹣k=,∴k=﹣4.题组B 能力提升练7. 如图所示是三个反比例函数、、的图象,由此观察得到、、的大小关系是____________________(用“<”连接).【答案】;8. 如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数(>0)的图象上,则点C的坐标为 _________ .【答案】(3,6);【解析】由题意B点的坐标为(1,6),D点的坐标为(3,2),因为ABCD是矩形,故C点的坐标为(3,6). 9. 已知y1与x成正比例(比例系数为k1),y2与x成反比例(比例系数为k2),若函数y=y1+y2的图象经过点(1,2),(2,),则8k1+5k2的值为 .【答案】9;【解析】设y1=k1x,y2=,则y=y1+y2=k1x+,将(1,2)、(2,)代入得:,解得:∴8k1+5k2==9.故答案为9. 10.已知A(),B()都在 图象上.若,则的值为 _________ .【答案】-12;【解析】由题意所以,因为,所以=-12.11. 如图,正比例函数的图象与反比例函数(>0)的图象交于点A,若取1,2,3…20,对应的Rt△AOB的面积分别为,则= ________. 【答案】105;【解析】△AOB的面积始终为,故=. 12. 如图所示,点,,在x轴上,且,分别过点,, 作轴的平行线,与反比例函数=(>0)的图象分别交于点,,,分别过点,,作轴的平行线,分别于轴交于点,,,连接,,,那么图中阴影部分的面积之和为____________.【答案】;【解析】()第一个阴影部分面积等于4;(),用待定系数法求出直线的解析式,再求出与的交点坐标为(),第二个阴影面积为=1;(),求出直线的解析式,再求出与的交点坐标为(),第三个阴影部分面积为,所以阴影部分面积之和为.题组C 培优拔尖练13.已知反比例函数的图象经过点P(2,﹣3).(1)求该函数的解析式;(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.【解析】解:(1)设反比例函数的解析式为y=,∵图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6,∴反比例函数的解析式为y=﹣; (2)∵点P沿x轴负方向平移3个单位,∴点P′的横坐标为2﹣3=﹣1,∴当x=﹣1时,y=﹣=6,∴∴n=6﹣(﹣3)=9,∴沿着y轴平移的方向为正方向. 14. 如图所示,已知双曲线与直线相交于A、B两点.第一象限上的点M(,)(在A点左侧)是双曲线上的动点.过点B作BD∥轴交于x轴于点D.过N(0,-)作NC∥轴交双曲线于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.【解析】解:(1)∵ D(-8,0),∴ B点的横坐标为-8,代入中,得=-2.∴ B点坐标为(-8,-2).而A、B两点关于原点对称,∴ A(8,2) .从而=8×2=16.(2)∵ N(0,-),B是CD的中点,A、B、M、E四点均在双曲线上,∴ ,,C(-2,-),E(-,-).,,,∴ .∴ =4.由直线及双曲线,得A(4,1),B(-4,-1),∴ C(-4,-2),M(2,2).设直线CM的解析式是,由C、M两点在这条直线上,得 解得.∴ 直线CM的解析式是. 15.如图,已知点A(﹣8,n),B(3,﹣8)是一次函数y=kx+b的图象和反比例函数图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积,(3)求方程kx+b﹣=0的解(请直接写出答案);(4)求不等式kx+b﹣>0的解集(请直接写出答案).【解析】解:(1)∵B(3,﹣8)在反比例函数图象上,∴﹣8=,m=﹣24,反比例函数的解析式为y=﹣,把A(﹣8,n)代入y=﹣,n=3,设一次函数解析式为y=kx+b,,解得,,一次函数解析式为y=﹣x﹣5.(2)﹣x﹣5=0,x=﹣5,点C的坐标为(﹣5,0),△AOB的面积=△AOC的面积+△BOC的面积=×5×3+×5×8=.(3)点A(﹣8,3),B(3,﹣8)是一次函数y=kx+b的图象和反比例函数图象的两个交点,方程kx+b﹣=0的解是:x1=﹣8,x2=3,(4)由图象可知,当x<﹣8或0<x<3时,kx+b>,∴不等式kx+b﹣>0的解集为:x<﹣8或0<x<3.
相关试卷
这是一份数学九年级下册第二十九章 投影与视图29.1 投影课后复习题,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版九年级下册29.1 投影综合训练题,共16页。试卷主要包含了 物高与影长的关系,14×20×32=2010,,4米 B.7,0米.等内容,欢迎下载使用。
这是一份人教版九年级下册第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数课后复习题,共19页。试卷主要包含了反比例函数的图象,反比例函数的性质, 函数y=的图象可能是等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)