所属成套资源:中考数学二轮复习专题(共54讲)
- 中考数学专题复习 专题20 相似三角形问题 试卷 6 次下载
- 中考数学专题复习 专题21 多边形内角和定理的应用 试卷 3 次下载
- 中考数学专题复习 专题23 平行四边形 试卷 5 次下载
- 中考数学专题复习 专题24 矩形 试卷 5 次下载
- 中考数学专题复习 专题25 正方形 试卷 4 次下载
中考数学专题复习 专题22 三角形中位线定理应用问题
展开这是一份中考数学专题复习 专题22 三角形中位线定理应用问题,文件包含中考数学专题复习专题22三角形中位线定理应用问题教师版含解析docx、中考数学专题复习专题22三角形中位线定理应用问题学生版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
中考数学总复习六大策略
1、学会运用函数与方程思想。
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法
2、学会运用数形结合思想。
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
3、要学会抢得分点。
一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
4、学会运用等价转换思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
5、学会运用分类讨论的思想。
如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
6、转化思想:
体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
专题22 三角形中位线定理应用问题
1.三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。
2.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
3.对三角形中位线的深刻理解
(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.
(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的.
(3)三角形的中位线不同于三角形的中线.
【例题1】(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是( )
A.1 B. C. D.
【对点练习】(2019内蒙古赤峰)如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是( )
A.2.5 B.3 C.4 D.5
【例题2】(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH= .
【对点练习】(2019广西梧州)如图,已知在△ABC中,D、E分别是AB、AC的中点,F、G分别是AD、AE的中点,且FG=2cm,则BC的长度是 cm.
【例题3】(2020湖南岳阳模拟)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形.
【对点练习】如图,已知平行四边形ABCD中,E为AD中点,CE交BA延长线于点F。求证:AB=AF。
一、选择题
1.(2020•内江)如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=( )
A.30 B.25 C.22.5 D.20
2.(2020•辽阳)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为 3.(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为( )
A.1 B. C.21 D.2
4.(2019辽宁抚顺)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为( )
A.8 B.12 C.14 D.16
5.(2019湖北襄阳)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是( )
A.AP=2OP B.CD=2OP C.OB⊥AC D.AC平分OB
二、填空题
6.(2020铜仁市模拟)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为 .
三、解答题
7.如图,在ABCD中,点E是AD的中点,BE的延长线与CD的延长线相交于点F
(1)求证:△ABE≌△DFE;
(2)试连结BD、AF,判断四边形ABDF的形状,并证明你的结论.
相关试卷
这是一份2024年中考数学总复习专题卷-三角形中位线定理(第十一卷),共18页。试卷主要包含了选择题,填空题,作图题,解答题,综合题等内容,欢迎下载使用。
这是一份(通用版)中考数学总复习考点22 三角形中位线定理应用问题(含解析),共13页。试卷主要包含了三角形中位线的定义,三角形中位线定理等内容,欢迎下载使用。
这是一份中考数学二轮专题复习专题05 函数应用问题综合题(教师版),共62页。试卷主要包含了一次函数+二次函数应用问题,一次函数+反比例函数应用问题,二次函数+反比例函数应用问题等内容,欢迎下载使用。