所属成套资源:高考数学一轮复习小题多维练(新高考专用)
第41练 分步加法和分步乘法计数原理-高考数学一轮复习小题多维练(新高考专用)
展开
这是一份第41练 分步加法和分步乘法计数原理-高考数学一轮复习小题多维练(新高考专用),文件包含第41练分步加法和分步乘法计数原理-高考数学一轮复习小题多维练新高考专用解析版docx、第41练分步加法和分步乘法计数原理-高考数学一轮复习小题多维练新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
1.一个电路中含有(1)(2)两个零件,零件(1)含有A,B两个元件,零件(2)含有C,D,E三个元件,每个零件中有一个元件能正常工作则该零件就能正常工作,则该电路能正常工作的线路条数为( )
A.9B.8C.6D.5
【答案】C
【解析】由分步乘法计数原理易得,该电路能正常工作的线路条数为条.
故选:C.
2.甲、乙、丙、丁四名交通志愿者申请在国庆期间到三个路口协助交警值勤,他们申请值勤路口的意向如下表:
这4名志愿者的申请被批准,且值勤安排也符合他们的意向,若要求三个路口都要有志愿者值勤,则不同的安排方法数有( )
A.14种B.11种C.8种D.5种
【答案】B
【解析】解:由题意得:
以C路口为分类标准:C路口执勤分得人口数情况有种,两个人或一个人
C路口执勤分得人口数为个,丙、丁在C路口,那么甲、乙只能在路口执勤;
C路口执勤分得人口数为个,丙或丁在C路口,具体情况如下:
丙在C路口:
A(丁)B(甲乙)C(丙);
A(甲丁)B(乙)C(丙);
A(乙丁)B(甲)C(丙);
丁在C路口:
A(甲乙)B(丙)C(丁);
A(丙)B(甲乙)C(丁);
A(甲丙)B(乙)C(丁);
A(乙)B(甲丙)C(丁);
A(乙丙)B(甲)C(丁);
A(甲)B(乙丙)C(丁);.
所以一共有2+3+6=11种选法.
故选:B.
3.甲、乙、丙、丁4名学生假期积极参加体育锻炼,每人在游泳、篮球、竞走这三个锻炼项目中选择一项进行锻炼,则甲不选游泳、乙不选篮球的概率为( )
A.B.C.D.
【答案】B
【解析】甲乙丙丁依次任选一项进行锻炼的不同方法种数为3×3×3×3种,
其中甲不选游泳,甲有2种选法,乙不选篮球,乙有2种选法,丙丁还是各有3种选法,
共有2×2×3×3种不同的选法,∴甲不选游泳、乙不选篮球的概率为.
故选:B.
4.设集合,集合,定义,则中元素个数是( )
A.7B.10C.D.
【答案】B
【解析】由题意得,,,
则有2种情况,有5种情况,则由乘法原理可得的元素个数有个,
故选:B.
5.为了贯彻落实中央新疆工作座谈会和全国对口支援新疆工作会议精神,促进边疆少数民族地区教育事业发展,我市教育系统选派了6名教师支援新疆4个不同的地区,要求A,B两个地区各安排一人,剩下两个地区各安排两人,则不同的分派方法有( )
A.90种B.180种C.270种D.360种
【答案】B
【解析】根据题意,分4步进行分析:
①在6人中选出1人,安排在A地区,有6种选法;
②在剩下5人中选出1人,安排在B地区,有5种选法;
③在剩下的4人中选出2人,安排在C地区,有(种)选法;
④最后2人安排在D地区,有1种选法;
则有(种)安排方法.
故选:B
6.“五经”是儒家典籍《周易》、《尚书》、《诗经》、《礼记》、《春秋》的合称.为弘扬中国传统文化,某校在周末兴趣活动中开展了“五经”知识讲座,每经排1节,连排5节,则《诗经》、《春秋》分开排的情况有________种.
【答案】
【解析】先将《周易》、《尚书》、《礼记》进行排列,共有种排法
再从产生的4个空位中选2个安排《诗经》、《春秋》,共有种排法
所以满足条件的情形共有种.
故答案为:
7.在的方格中放入1个白球和完全相同的2个黑球,每一行、每一列各只有一个球,每球占一格,则不同的放法种数为__________.(结果用数字作答)
【答案】
【解析】先在个格选一个放白球,方法数有种,
再放个黑球,方法数有种,
所以不同的放法数有种.
故答案为:
8.2022北京冬奥会开幕式在北京鸟巢举行,小明一家五口人观看开幕式表演,他们一家有一排10个座位可供选择,按防疫规定,每两人之间必须至少有一个空位.现要求爷爷与奶奶之间有且只有一个空位,小明只能在爸爸妈妈中间且与他俩各间隔一个空位,则不同的就座方案有___________种.
【答案】24
【解析】根据题意,进行以下分类:
爷爷或奶奶,排首位或排末位,这时候爸爸或妈妈只能排第五个或第六个位置,此时,就座方案为:种;
爷爷或奶奶,排第二位或排倒数第二位,这时候爸爸或妈妈只能排第六个位置,此时,就座方案为:;种;
故不同的就座方案共有24种.
故答案为:24.
9.勠力同心,共克时艰!近日,某地因出现新冠疫情被划分为“封控区”“管控区”和“防范区”,现有6位专家到这三个“区”进行一天的疫情指导工作,每个“区”半天安排一位专家,每位专家只安排半天的工作,其中专家甲只能安排在上午,专家乙不安排在“防范区”,则不同的安排方案一共有___________种.(用数字作答)
【答案】240
【解析】甲安排在“防范区”上午时,则专家乙有4种可能,其余4位专家有种可能,,
甲不安排在“防范区”上午时,甲有2种可能,乙有3种可能,其余4位专家有种可能,,
所以共有种安排方案.
故答案为:240
10.为提升市民的艺术修养,丰富精神文化生活,市图书馆开设了工艺、绘画、雕塑等公益讲座,讲座海报如图所示.某人计划用三天时间参加三场不同类型讲座,则共有_______种选择方案.(用数字作答)
【答案】8
【解析】由讲座海报可知,先选择参加绘画讲座的方案有2种,再选择一天参加雕塑讲座,有2种方案,最后再在剩下的2天里选择一天参见工艺讲座,有2种,所以一共有种选择方案.
故答案为:8.
1.某航母编队将进行一次编队配置科学演练,要求艘攻击型核潜艇一前一后,艘驱逐舰和艘护卫舰分列左右,每侧艘,同侧不能都是同种舰艇,则舰艇分配方案的方法数为( )
A.B.C.D.
【答案】B
【解析】艘攻击型核潜艇放在中间,共有种顺序,
这艘攻击型核潜艇前方是艘护卫舰和艘驱逐舰,剩余的艘护卫舰和艘驱逐舰列在攻击型核潜艇的后方,
由分步乘法计数原理可知,不同的配方案的方法数为.
故选:B.
2.重庆九宫格火锅,是重庆火锅独特的烹饪方式.九宫格下面是相通的,实现了“底同火不同,汤通油不通”它把火锅分为三个层次,不同的格子代表不同的温度和不同的牛油浓度,其锅具抽象成数学形状如图(同一类格子形状相同):
“中间格“火力旺盛,不宜久煮,适合放一些质地嫩脆、顷刻即熟的食物;
“十字格”火力稍弱,但火力均匀,适合煮食,长时间加热以锁住食材原香;
“四角格”属文火,火力温和,适合焖菜,让食物软糯入味.现有6种不同食物(足够量),其中1种适合放入中间格,3种适合放入十字格,2种适合放入四角格.现将九宫格全部放入食物,且每格只放一种,若同时可以吃到这六种食物(不考虑位置),则有多少种不同放法( )
A.108B.36C.9D.6
【答案】C
【解析】由题可知中间格只有一种放法;
十字格有四个位置,3种适合放入,所以有一种放两个位置,共有3种放法;
四角格有四个位置,2种适合放入,可分为一种放三个位置,另一种放一个位置,有两种放法,或每种都放两个位置,有一种放法,故四角格共有3种放法;
所以不同放法共有种.
故选:C.
3.数432的不同正因数个数为( )
A.12B.16C.20D.24
【答案】C
【解析】解:因为,
所求数的不同正因数的个数可以看做从、两盒子中取数,
其中盒子装有个,盒子装有个,将取出的数相乘即可得到的一个因数(如一个数也不取则看做);
则从盒子中取数一共有种取法,盒子中取数一共有种取法,
所以一共有取法,故有个的不同正因数;
故选:C
4.“回文联”是对联中的一种,既可顺读,也可倒读.比如,一副描绘厦门鼓浪屿景色的回文联:雾锁山头山锁雾,天连水尾水连天.由此定义“回文数”,n为自然数,且n的各位数字反向排列所得自然数与n相等,这样的n称为“回文数”,如:1221,2413142.则所有5位数中是“回文数”且各位数字不全相同的共有( )
A.648个B.720个C.810个D.891个
【答案】D
【解析】根据“回文数”的特点,只需确定前3位即可,最高位即万位有9种排法,千位和百位各有10种排法,根据分步乘法计数原理,共有种排法,其中各位数字相同的共有9种,则所有5位数中是“回文数”且各位数字不全相同的共有种.
故选:D.
5.如图,湖北省分别与湖南、安徽、陕西、江西四省交界,且湘、皖、陕互不交界,在地图上分别给各省地域涂色,要求相邻省涂不同色,现有种不同颜色可供选用,则不同的涂色方案数为( )
A.B.C.D.
【答案】C
【解析】依题意,按安徽与陕西涂的颜色相同和不同分成两类:
若安徽与陕西涂同色,先涂陕西有种方法,再涂湖北有种方法,涂安徽有1种方法,涂江西有种方法,
最后涂湖南有3种方法,由分步计数乘法原理得不同的涂色方案种,
若安徽与陕西不同色,先涂陕西有种方法,再涂湖北有种方法,涂安徽有3种方法,
涂江西、湖南也各有种方法,由分步计数乘法原理得不同的涂色方案 种方法,
所以,由分类加法计数原理得不同的涂色方案共有种.
故选:C
6.从2021年起重庆市新高考,打破文理分科实行“”模式,“3”代表语、数、外三科,每人必选这3科,“1”代表学生从物理和历史两科中任选1科,“2”代表学生从化学、生物、政治、地理四科中任选2科,每个学生的选科方式共有________种.
【答案】12
【解析】从物理和历史两科中任选科,共有种选法
从化学、生物、政治、地理四科中任选科,共有种选法
每个学生的选科方式共有种
故答案为:
7.用数字组成没有重复数字的五位数,其中奇数的个数为____ .
【答案】
【解析】要组成无重复数字的五位奇数,则个位只能排中的一个数,共有3种排法,然后还剩个数,剩余的个数可以在十位到万位个位置上全排列,共有种排法,
由分步乘法计数原理得,由组成的无重复数字的五位数中奇数有个.故答案为:.
8.2022年疫情期间,某市中心医院分三批共派出6位年龄互不相同的医务人员支授上海六个不同的方舱医院,每个方舱医院分配一人,第一批派出一名医务人员的年龄为,第二批派出两名医务人员的年龄最大者为,第三批派出三名医务人员的年龄最大者为,则满足的分配方案的概率为___________.
【答案】
【解析】解:由题意得年龄最大的医务人员必在第三批,安排年龄最大的医务人员有种方法,
第三批中剩下的两个方舱医院安排有种分配方式,
在留下的三位医务人员中,把这个年龄最大的医务人员安排在第二批,有种分配方式,
剩下的两位医务人员有种分配方式,
由分步乘法计数原理知:所有分配方式数为种:
又没有任何要求的分配方式为种,
所以满足的分配方案的概率为,
故答案为:
9.2021年12月,南昌最美地铁4号线开通运营,甲、乙、丙、丁四位同学决定乘坐地铁去观洲、人民公园、新洪城大市场三个地方游览,每人只能去一个地方,人民公园一定要有人去,则不同游览方案的种数为______.
【答案】65
【解析】由题可知没有限制时,每人有3种选择,则4人共有种,
若没人去人民公园,则每人有2种选择,则4人共有种,
故人民公园一定要有人去的不同游览方案有种.
故答案为:65.
10.安排高二年级一、二两个班一天的数、语、外、物、体,一班的化学及二班的政治各六节课.要求体育课两个班一起上,但不能排在第一节;由于选课之故,一班的化学和二班的政治要安排在同一节;其他语、数、外、物四科由同一任课教师分班上课,则不同的排课表方法共有__________种.
【答案】5400
【解析】先安排体育课(不能在第一节)有种,化学和政治在同一节有种,
剩下4门主课,不能同时上一种课,先安排一班有种,
不妨设第1,2,3,4节的顺序,
二班第一节,一班有3种选项第2,3,4节,
对应一班选出的某节课,比如第2节,
在一班上第2节时,有第1,3节,第1,4节,第3,4节3种,
故不同的排课表方法共有种,
故答案为:5400
1.十八世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸连接起来.有人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完这七座桥,最后回到出发点.这就是著名的哥尼斯堡七桥问题(下简称七桥问题),很多人尝试解决这个问题,但绞尽脑汁,就是无法找到答案.直到1736年,29岁的欧拉以拉丁文正式发表了论文《关于位置几何问题的解法》,文中详细讨论了七桥问题并作了一些推广,该论文被认为是图论、拓扑学和网络科学的发端.图1是欧拉当年解决七桥问题的手绘图,图2是该问题相应的示意图,其中,,,四个点代表陆地,连接这些点的边就是桥.欧拉将七桥问题转化成一个几何问题——笔画问题.一笔画问题中,要求不遗漏地依次走完每一条边,允许重复走过某些结点,可以不回到出发点,但不允许重复走过任何一条边.在图3中,根据以上一笔画问题的规则,不同的走法总数为( )
A.B.C.D.
【答案】D
【解析】
图中,和是偶点,和是奇点,根据欧拉找到的“一笔画”规律:凡是只有两个奇点的连通图(其余都为偶点)一定可以一笔画成.画时必须把一个奇点为起点,另一个奇点为终点.
以为起点时,有、、、、、六种画法
以为起点时,所有路线与以上情况相反即可,也有六种,故共有种画法
故选:D
2.第24届冬奥会于2022年2月4日在中华人民共和国北京市和河北省张家口市联合举行.此届冬奥会的项目中有两大项是滑雪和滑冰,其中滑雪有6个分项,分别是高山滑雪、自由式滑雪、单板滑雪、跳台滑雪、越野滑雪和北欧两项,滑冰有3个分项,分别是短道速滑、速度滑冰和花样滑冰.甲和乙相约去观看比赛,他们约定每人观看两个分项,而且这两个分项要属于不同大项.若要求他们观看的分项最多只有一个相同,则不同的方案种数是( )
A.324B.306C.243D.162
【答案】B
【解析】由题意得:总的观看方案为,
两个分项都相同的观看分案为,
所以观看的分项最多只有一个相同,则不同的方案种数是,
故选:B
3.某学校每天安排四项课后服务供学生自愿选择参加.学校规定:(1)每位学生每天最多选择项;(2)每位学生每项一周最多选择次.学校提供的安排表如下:
若某学生在一周内共选择了阅读、体育、编程项,则不同的选择方案共有( )
A.种B.种C.种D.种
【答案】D
【解析】周一阅读,周三体育,周四或周二编程;
周一阅读,周四体育,周二编程;周二阅读,周一体育,周四编程;
周二阅读,周三体育,周一编程;周二阅读,周三体育,周四编程;
周二阅读,周四体育,周一编程;周三阅读,周一体育,周二或周四编程;
周三阅读,周四体育,周一或周二编程;周四阅读,周一体育,周二编程;
周四阅读,周三体育,周一或周二编程.共14种.
故选:D.
4.(多选题)如图所示,各小矩形都全等,各条线段均表示道路.某销售公司王经理从单位处出发到达处和处两个市场调查了解销售情况,行走顺序可以是,也可以是,王经理选择了最近路径进行两个市场的调查工作.则王经理可以选择的最近不同路线共有( )
A.31条B.36条C.210条D.315条
【答案】CD
【解析】设小矩形的长为,宽为,则从的最近路线为,从的最近路线为,
若,则选择行走顺序为,先从,最近路线需要走3个长,2个宽,则不同路线有种,从,最近路线需要走5个长,2个宽,则不同路线有种,所以从的不同路线有种;
若,则选择行走顺序为,先从,最近路线需要走2个长,4个宽,则不同路线有种,从,最近路线需要走5个长,2个宽,则不同路线有种,所以从的不同路线有种.
综上,王经理可以选择的最近不同路线共有210条或315条.
故选:CD.
5.学校分配甲、乙、丙三人到7个不同的社区参加社会实践活动,每个社区最多分配2人,则有_________种不同的分配方案(用数字作答).
【答案】336
【解析】解:分两种情况讨论,
当这七个社区恰有三个社区各有一人参与社会实践活动,则相应的分配方案有种;
当这七个社区的某个社区有两个人参与社会实践,另一个社区有一个人参与社会实践,则相应的分配方案有种.
所以根据分类加法原理得,共有种.
故答案为:
6.假期里,有4名同学去社区做文明实践活动,根据需要,要安排这4名同学去甲、乙两个文明实践站,每个实践站至少去1名同学,每名同学只去1个实践站,则不同的安排方法共有________种.
【答案】14
【解析】根据题意,将4人安排到2个文明实践站,每人有2种安排方法,则有2×2×2×2=16种安排方法,其中都安排在同一个文明实践站的方法有2种,则有16-2=14种不同的安排方法.
故答案为:14.
7.设项数为的数列满足:,且对任意,,都有,则这样的数列共有_____个.
【答案】31
【解析】当,时,,
所以可能情况如下:
1、{一个1,三个0}:、、、,4个;
2、{两个1,一个和0 }:、、、、、、、、、、、,12个;
3、{一个,三个0}:、、、,4个;
4、{两个,一个1和0}:、、、、、、、、、、、,12个;
5、{四个0}:,1个;
6、{两个,两个1 }:、、、、、,6个;
7、{两个0,一个1 和}:、、、、、、、、、、、,12个;
综上,数列共有51个.
当,时,,
当,时,,
当,时,,
当,时,,
当,时,,
所以、、、、、、、、、、、、、、、、、、、,20个不满足;
综上,满足要求的数列有31个.
故答案为:31
8.用标有克,克,克的砝码各一个,在某架无刻度的天平上称量重物,如果天平两端均可放置砝码,那么该天平所能称出的不同克数(正整数的重物)至多有______种;若再增加克,克的砝码各一个,所能称出的不同克数(正整数的重物)至多有______种.
【答案】 7 62
【解析】当一边放砝码时:一个砝码时,有能称出克、克、克,两个砝码时能称出克、克、克,三个砝码时能称出克共有种情况;
当两边都放砝码时:一边各放一个砝码时,则能称出克、克、克三种情况;
一边两个另一边一个有克、克、克三种情况,
综上所述,该天平所能称出的不同克数至多有共有种情况.
若用克、克、克的砝码可称量范围,
若加入克后,可称量的范围,即,
若加入克后,可称量的范围,即,
也可称量,即,
也可称量,即,
则,,,,,
因为为正整数,所以,
所以再增加克,克的砝码各一个,所能称出的不同克数(正整数的重物)至多有种.
故答案为:;.
交通路口
A
B
C
志愿者
甲、乙、丙、丁
甲、乙、丙
丙、丁
时间
周一
周二
周三
周四
周五
课后服务
音乐、阅读、体育、编程
口语、阅读、编程、美术
手工、阅读、科技、体育
口语、阅读、体育、编程
音乐、口语、美术、科技
相关试卷
这是一份新高考数学一轮复习课时讲练 第10章 第1讲 分类加法计数原理与分步乘法计数原理 (含解析),共15页。试卷主要包含了两个计数原理,直线l等内容,欢迎下载使用。
这是一份人教版高考数学一轮复习考点规范练48分类加法计数原理与分步乘法计数原理含答案,共3页。试卷主要包含了故选C等内容,欢迎下载使用。
这是一份第01讲 分类加法计数原理与分步乘法计数原理 (精讲)-高考数学一轮复习讲练测(新教材新高考),文件包含第01讲分类加法计数原理与分步乘法计数原理精讲解析版docx、第01讲分类加法计数原理与分步乘法计数原理精讲原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。