|试卷下载
终身会员
搜索
    上传资料 赚现金
    中考几何模型压轴题 专题21《等腰三角形的存在性》
    立即下载
    加入资料篮
    中考几何模型压轴题 专题21《等腰三角形的存在性》01
    中考几何模型压轴题 专题21《等腰三角形的存在性》02
    中考几何模型压轴题 专题21《等腰三角形的存在性》03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考几何模型压轴题 专题21《等腰三角形的存在性》

    展开
    这是一份中考几何模型压轴题 专题21《等腰三角形的存在性》,共10页。

    中考数学几何专项复习策略

    在九年级数学几何专题复习中,怎样科学、合理地设计教学内容、精心地组织课堂教学,怎样采取得力的措施和高效的方法,大幅度、快节奏地提高学生的数学素养,让后进生吃的消,中等生吃的饱,优等生吃得好,使复习获得令人满意的效果?这是所有处在一线数学教师普遍关注和思考的课题。本文试图从优质教学观的理论对课堂的结构和教师专业素养以及结合多年一线教学实践经验作出阐述、探究,举例谈几何专题复习的几点策略

    策略一 建构高效的课堂教学模式-----先学后教,当堂训练。

    高效的课堂教学模式是保证高效的复习效果的前提,学生在教师的指导和辅导下进行先自学、探究和及时训练,获得知识、发展能力的一种教学模式。

    策略二 专题内容的设计应遵循教与学的认知规律和学生心理发展规律,凸显方法规律,由简单到复杂,由特殊到一般,再由一般到特殊

       总结规律,推广一般。从一般到特殊:抛砖引玉,解决问题。

    策略三 设计专题内容时考虑建立几何模型,体现思想方法,让学生驾轻就熟,化难为易,化繁为简。

    几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。题目千变万化,但万变不离其宗。  

     

    专题21等腰三角形的存在性

    破解策略

    以线段AB为边的等腰三角形构造方法如图1所示:

    等腰三角形的另一个顶点在线段AB的垂直平分线上,或以AB为圆心、AB长为半径的圆上(不与线段AB共线).

    解等腰三角形的存在性问题时,若没有明确指出等腰三角形的底或腰,就需要进行分类讨论.通常这类问题的解题策略有:

    (1)几何法:先分类讨论,再画出等腰三角形,后计算.

    如图2,若ABAC,过点AADBC,垂足为D,则BDCD,∠BAD=∠CAD,从而利用锐角三角函数、相似三角形等知识解决问题.

    (2)代数法:先罗列三边长,再分类讨论列方程,然后解方程并检验.

    有时候将几何法和代数法相结合,可以使得解题又快又好.

    例题讲解

    1  如图,正方形ABCD的边长是16,点EAB边上,AE=3,FBC边上不与BC重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′=    

      16或4

    ①如图1,当CB′=CD时,点F与点C重合,不符合题意,舍去;

    ②如图2,当DB′=CD时,DB′=16;

    ③如图3,当DB′=BC时,过点BGHAD,交AB于点G,交CD于点H

    显然GH分别为ABCD的中点.

    由题意可得BE=13,DHBG=8,所以EG=5,

    从而BG=12,BH=4,

    所以DB′==4

    如图2所示:当DB′=CD时,则DB′=16(易知点FBC上且不与点CB重合).

    图2

    如图3所示:当BDBC时,过B′点作GHAD,则BGE=90°.

    图3

    BCBD时,AGDHDC=8.

    AE=3,AB=16,得BE=13.

    由翻折的性质,得BEBE=13.

    EGAGAE=83=5,

    BG

    BHGHBG=1612=4,

    DB′=

     

    2  如图,在ABC中,ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为ts)(0<t<4),

    :如图,过点PPHACH
    ∵∠C=90°,ACBC
    PHBC
    ∴△APH∽△ABC

    AC=4cm,BC=3cm,
    AB=5cm,

    PH=3﹣tAH

    QHPQ

    APQ中,
    AQAP,即t=5﹣t时,解得:t1
    PQAQ,即t时,解得:t2t3=5;
    PQAP,即=5﹣t时,解得:t4=0,t5
    0<t<4,
    t3=5,t4=0不合题意,舍去,
    tsss时,APQ是等腰三角形.

    3  如图,在平面直角坐标系xOy中,矩形OABC的边OAy轴的正半轴上,OCx轴的正半轴上,OA=1,OC=2,D在边OC上且OD

    (1)求直线AC的解析式;
    (2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

    :(1)设直线AC的解析式ykxb
    OA=1,OC=2,
    A(0,1),C(2,0)代入函数解析式求得:kb=1
    直线AC的函数解析式:y
    (2)若DC为底边,
    M的横坐标为
    则点M的坐标为(
    直线DM解析式为:y
    P(0,);
    DM为底,则CDCM
    AMAN
    N,1),
    可求得直线DM的解析式为y=(+2)x),
    P(0,))
    CM为底,则CDDM
    M的坐标为(
    直线DM的解析式为yx
    P的坐标为(0,

    综上所述,符合条件的点P的坐标为(0,),(0,)),(0,

    4  已知抛物线yx2mxn的对称轴为x2,且与x轴只有一个交点.
    (1)求mn的值;
    (2)把抛物线沿x轴翻折,再向右平移2个单位,向下平移1个单位,得到新的抛物线C,求新抛物线C的解析式;
    (3)已知Py轴上的一个动点,定点B的坐标为(0,1),问:在抛物线C上是否存在点D,使BPD为等边三角形?若存在,请求出点D的坐标;若不存在,请说明理由.

    :(1)抛物线的对称轴为x2,
    m4.
    抛物线与x轴只有一个交点,
    m24n=0.  从而n=4.

     

    (2)原抛物线的表达式为y=-x24x-4=-(x+2)2

        所以抛物线C的表达式为yx2-1.

    (3)假设点D存在,设点D的坐标为(dd21).

        如图,作DHy轴于点H

        DH2d2BH2=(d22)2

        BPD是等边三角形,则有,即d2=3(d22)2

        解得dd

    所以满足条件的点D存在,分别为D1,2),D2(-,2),D3),

    D4(-).

        例5  如图,在平面直角坐标系中,抛物线yx2-3x8x轴交于AB两点,与y轴交于点C,直线l经过原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E(3,-4),连结CE,若Py轴负半轴上的一个动点,设其坐标为(0m),直线PB与直线l交于点Q.试探究:当m为何值时,OPQ是等腰三角形.

      由抛物线yx2-3x-8=x-8)(x+2) ,

    可得点ABC的坐标分别为(-2,0),(8,0)(0,-8).

    所以CE=5=OE

    所以OEC是顶角为钝角的等腰三角形,即OEC>90°

    OPQ曲等腰三角形有三种可能:

    POPQ时,即OPQ为顶角,

    显然POQCOE

    所以OPQOEC90°

    由题意可知这种可能性不存在;

    OPOQ时,则OPQOQP

        如图1,过点EPQ的平行线,分别交x轴,y轴于点FG

        OGEOPQOQPOEG

        所以OGOE=5,即点G的坐标为(0,-5),

        所以直线GE的表达式为yx5,

        所以点F的坐标为(5,0).

       

    所以,即

    QOQP时,则QPOQOPOCE,所以CEPQ

    如图2,设直线CEx轴交于点H

    CE两点的坐标可得直线CE的表达式为,yx8.

    所以点H的坐标为(6,0).

       

    所以,即

    综上可得,当m的值为时,OPQ是等腰三角形.

    进阶训练

    1.如图,在RtABC中,ACB= 90°AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,MN分别是ADCD的中点,连结MN,设点D运动的时间为t,若DMN是等腰三角形,求t的值.

    【答案】t5,6或时,DMN等腰三角形.

    2.设二次函数yx22axa<0)的图象顶点为A,与x轴的交点为B,C.

    (1)当ABC为等边三角形时,求a的值,

    (2)当ABC为等腰直角三角形时,求a的值.

    【答案】(1)a=-;(2)a=-

    3.如图,在平面直角坐标系中,点A的坐标为(-2,0),点B的坐标为(0,2),E为线段AB上的一个动点(不与点AB重合),以E为顶点作OFT=45°,射线ET交线段OB于点FCy轴正半轴上一点,且OCAB.抛物线yx2mxn经过AC两点.

    (1)求此抛物线的函数表达式;

    (2)求证:BEFAOE

    (3)当EOF为等腰三角形时,求此时点E的坐标.

    【答案】(1)y=-x2x(2)略;(3)点E的坐标为(-11),(,2).

    提示】(2)由BAOFEOABO45°即可证

    3)分类讨论:OEOF时,E与点A重合,不符合题意;

    EOEF时(如图1),易证AFO≌△BFE,从而BEAC=2,再过点EEH y轴,即可求得点E,2);

    FEFD时(如图2),此时BFEOFE均为等腰直角三角形,求得点E(-11).

    4.如图,抛物线yax26xcx轴交于点A(-5,0),B(-1,0),与y轴交于点CP是抛物线上的一个动点,连结PA,过点Py轴的平行线交直线AC于点D,请问:APD能否为等腰三角形?若能,求出此时点P的坐标;若不能,请说明理由.

    【答案】APD能为等腰三角形,点P的坐标为(-23),(-1,0),(,67),或(67).

    【提示】由点AB的坐标可得抛物线的表达式为yax26x-5.从而得到C0,-5).所以直线ACy=-x-5.

    可设点Pm,-m2-6m-5),则Dm,-m-5).

        APD为等腰三角形有三种情况,由ADP=45°或135°.用代几结合解决问题.

        APAD时,FAD=90°,得P(一2,3);

        APPD时,APD=90°,得P1,0);

        ADPD时,可列方程

    从而m,得P,67),或(67).

      5.如图,抛物线yax2+2x-3与x轴交于AB两点,且点B的坐标为(1,0).直线yx分别与x轴,y轴交于CF两点.Q是直线CF下方的抛物线上的一个动点,过点Qy轴的平行线,交直线CF干点D.点E在线段CD的延长线上,连结QE,问:以QD为腰的等腰QDE的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

    答案存在QD为腰的等腰QDE的面积最大值为

    【提示】有题意可得抛物线的解析式为yx2+2x-3,C,0),F(0,-),从而tanEDQ=tanOFC如图,作QGCE于点GDQtQGtDGt

    DQDEDE=2DG,从而QDE面积为SDE·QGt2

    显然t2t2

    所以DQEQS最大值.设Qxx2+2x-3),则tQD=-x2x可得t=3Smax

    相关试卷

    中考几何模型压轴题 专题26《相似三角形的存在性》: 这是一份中考几何模型压轴题 专题26《相似三角形的存在性》,共8页。

    中考几何模型压轴题 专题25《全等三角形的存在性》: 这是一份中考几何模型压轴题 专题25《全等三角形的存在性》,共8页。

    中考几何模型压轴题 专题24《特殊平行四边形的存在性》: 这是一份中考几何模型压轴题 专题24《特殊平行四边形的存在性》,共7页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考几何模型压轴题 专题21《等腰三角形的存在性》
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map