所属成套资源:七年级数学上学期期末专项训练(北师大版,成都专用)
专练06 动角问题(B卷解答题)-七年级数学上学期期末专项训练(北师大版,成都专用)
展开
这是一份专练06 动角问题(B卷解答题)-七年级数学上学期期末专项训练(北师大版,成都专用),文件包含专练06动角问题B卷解答题解析版docx、专练06动角问题B卷解答题原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
专练06 动角问题(B卷解答题)1.如图①,已知,在内部画射线,得到三个角,分别为、、.若这三个角中有一个角是另外一个角的3倍,则称射线为的“幸福线”.(本题中所研究的角都是大于而小于的角.)(1)角的三等分线________这个角的“幸福线”(填“是”或“不是”);(2)如图①,,射线为的“幸福线”,求的度数;(3)如图②,已知,射线从出发,以每秒的速度绕点逆时针旋转,同时,射线从出发,以每秒的速度绕点逆时针旋转,设运动的时间为秒().若、、三条射线中,一条射线恰好是以另外两条射线为边的角的“幸福线”,求出所有可能的值. 2.已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ= ;②当α=80°时,如图2,求∠POQ的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ= ,(请用含m、n的代数式表示).3.如图所示,O是直线上的一点,是直角,平分.(1)如图①,若,求的度数;(2)在图①,若,直接写出的度数_________(用含a的代数式表示);(3)将图①中的绕顶点O顺时针旋转至图②的位置.①探究和的度数之间的关系,写出你的结论,并说明理由;②在的内部有一条射线,满足,试确定与的度数之间的关系,说明理由. 4.点O直线AB上一点,过点O作射线OC,使得∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图1,将三角板MON的一边ON与射线OB重合时,求∠MOC的度数;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=∠AOM,求∠NOB的度数. 5.已知,OC、OD是过点O的射线,射线OM、ON分别平分∠AOC和∠DOB.(1)如图①,若OC、OD是∠AOB的三等分线,则______°(2)如图②,若,,则______°(3)如图③,在∠AOB内,若,则______°(4)将(3)中的∠COD绕着点O逆时针旋转到∠AOB的外部(,),求此时∠MON的度数. 6.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为 (直接写结果).7.如图,两条直线AB、CD相交于点O,且,射线OM从OB开始绕O点逆时针方向旋转,速度为,射线ON同时从OD开始绕O点顺时针方向旋转,速度为两条射线OM、ON同时运动,运动时间为t秒本题出现的角均小于平角当时,的度数为多少,的度数为多少;的度数为多少;当时,若,试求出t的值;当时,探究的值,问:t满足怎样的条件是定值;满足怎样的条件不是定值? 8.如图1,点O为直线AB上一点,过点O作射线OC,使.将一直角三角板的直角顶点放在点O处,一直角边OM在射线OB上,另一直角边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使边OM在的内部,且恰好平分.问:此时直线ON是否平分?请说明理由.(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转过程中,第n秒时,直线ON恰好平分,则n的值为______(点接写结果)(3)若图1中的三角板绕点O旋转至图3,使ON在的内部时,的度数是多少?9.如图(1),∠BOC和∠AOB都是锐角,射线OB在∠AOC内部,,.(本题所涉及的角都是小于180°的角)(1)如图(2),OM平分∠BOC,ON平分∠AOC,填空:①当,时,______,______,______;②______(用含有或的代数式表示).(2)如图(3),P为∠AOB内任意一点,直线PQ过点O,点Q在∠AOB外部:①当OM平分∠POB,ON平分∠POA,∠MON的度数为______;②当OM平分∠QOB,ON平分∠QOA,∠MON的度数为______;(∠MON的度数用含有或的代数式表示)(3)如图(4),当,时,射线OP从OC处以5°/分的速度绕点O开始逆时针旋转一周,同时射线OQ从OB处以相同的速度绕点O逆时针也旋转一周,OM平分∠POQ,ON平分∠POA,那么多少分钟时,∠MON的度数是40°? 10.如图1,点O为直线AB上一点,过点O作射线OC,OM,ON,ON始终在OM的右侧,∠BOC=112°,∠MON=α.(1)如图1,当α=70°,OM平分∠BOC时,求∠NOB的度数;(2)如图2,当OM与OB边重合,ON在OB的下方时,α=80°,将∠MON绕O点按每秒4°的速度沿逆时针方向旋转n(0°<n<180°),使射线ON与∠BOC的角平分线形成夹角为30°,求此时旋转一共用了多少秒;(3)当∠MON在直线AB上方时,若α=90°,点F在射线OB上,射线OF绕点O顺时针旋转n度(0°<n<180°),恰好使得∠FOA=2∠AOM,OH平分∠NOC,∠FOH=124°,请直接写出此时n的值.11.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P在直线l上,射线PR,PS,PT位于直线l同侧,若PS平分∠RPT,则有∠RPT=2∠RPS,所以我们称射线PR是射线PS,PT的“双倍和谐线”.【迁移运用】(1)如图1,射线PS (选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT (选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OAMN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数. 12.(1) 特例感知:如图①,已知线段MN=30cm,AB=2cm,线段AB在线段MN上运动(点A不超过点M,点B不超过点N),点C和点D分别是AM,BN的中点.① 若AM=16cm,则CD= cm;② 线段AB运动时,试判断线段CD的长度是否发生变化?如果不变,请求出CD的长度,如果变化,请说明理由.(2) 知识迁移:我们发现角的很多规律和线段一样,如图②,已知∠AOB在∠MON内部转动,射线OC和射线OD分别平分∠AOM和∠BON.① 若∠MON=150°,∠AOB=30°,求∠COD=_____________度.② 请你猜想∠AOB,∠COD和∠MON三个角有怎样的数量关系.请说明理由.(3) 类比探究:如图③,∠AOB在∠MON内部转动,若∠MON=150°,∠AOB=30°,,用含有k的式子表示的度数. (直接写出计算结果) 13.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起:(1)若∠DCE=35°,则∠ACB的度数为__________;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由(4)三角尺ACD不动,将三角尺BCE的CE边与CA边重合,然后绕点C按顺时针或逆时针方向任意转动一个角度,当∠ACE(0°<∠ACE<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠ACE角度所有可能的值.不用说明理由. 14.一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.【发现猜想】(1)如图①,已知∠AOB=70°,∠AOD=100°,OC为∠BOD的角平分线,则∠AOC的度数为 ;.【探索归纳】(2)如图①,∠AOB=m,∠AOD=n,OC为∠BOD的角平分线. 猜想∠AOC的度数(用含m、n的代数式表示),并说明理由.【问题解决】(3)如图②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线? 15.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一块直角三角板DOE直角顶点放在点O处.(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=____________°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠BOD、∠COE的度数;(3)如图3,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.
相关试卷
这是一份初中数学沪科版七年级上册第4章 直线与角4.4 角随堂练习题,共117页。
这是一份专练07 B卷填空题-七年级数学上学期期末专项训练(北师大版,成都专用),文件包含专练07B卷填空题解析版docx、专练07B卷填空题原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份专练05 动角问题(A卷解答题)-七年级数学上学期期末专项训练(北师大版,成都专用),文件包含专练05动角问题A卷解答题解析版docx、专练05动角问题A卷解答题原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。