所属成套资源:七年级数学上学期期末专项训练(北师大版,成都专用)
专练07 B卷填空题-七年级数学上学期期末专项训练(北师大版,成都专用)
展开
这是一份专练07 B卷填空题-七年级数学上学期期末专项训练(北师大版,成都专用),文件包含专练07B卷填空题解析版docx、专练07B卷填空题原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
专练07 B卷填空题1.若|x|=4,|y|=5,则x-y的值为____________. 2.利用数轴解决下面的问题:(1)式子|x+1|+|x﹣2|的最小值是 ;(2)式子|x﹣2|+|2x﹣6|+|x﹣4|的最小值是 ;(3)当式子|x﹣1|+|x﹣2|+|x﹣3|+……+|x﹣2019|取最小值时,相应的x的取值范围或值是 ,最小值是 . 3.已知方程(a+1)x+2=0的解是正整数时,整数a取值为_________________. 4.已知数轴上有A,B,C三点,分别代表﹣30,﹣10,10,动点P从A点出发经过2秒后,动点P到A,B,C的距离和为48个单位,则动点P的速度为每秒__________个单位. 5.如图,已知为直线上一点,平分,则的度数为 ______. (用含的式子表示) 6.关于x的方程2a (x+5)=3x+1无解,则a=______. 7.若关于x的方程,无论k为任何数时,它的解总是,那么_______. 8.如图(1).点在线段上.图中共有三条线段: 线段, 线段, 线段, 若其中有一条线段的长度是另一条线段长度的两掊, 则称点为线段的 “奇分点”.若, 如图(2), 点从点开始以每秒3cm的速度向A运动,当点M到达A点时停止运动,运动的时间为t秒.当t=_____________秒,M是线的“奇分点" (写出一种情况即可), 如果同时点从点A的位置开始以每秒2cm的速度向点B运动, 如图(3)所示, 井与点同时停止, 则当___________秒,M是线段AN的“奇分点”. 9.用表示,例1995!=,那么的个位数字是_____________. 10.求所有分母不超过100的正的真分数的和,即:=_______. 11.有理数a,b,c在数轴上所表示的点的位置如图所示,则化简|a+b|﹣|c﹣b|+|c|﹣|c﹣a|=_____. 12.如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,……,依此类推,移动 6 次后该点对应的数是___;至少移动_____次后该点到原点的距离不小于20. 13.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为_________. 14.我们知道在9点整时,时钟的分针与时针恰好互相垂直,那么从9点开始,到10点之前,经过__________分钟后,时钟的时针与分针的夹角为105°. 15.某超市出售一种礼品混合糖是由两种糖果按一定比例配制而成,其中A糖果的进价为15元/千克,糖果的进价为10元/千克,按现行价格销售每千克获得56%的利润率.物价上涨,A糖果进价上涨20%,糖果进价上涨10%,配制后的总进价增加了12%,公司为了拓展市场,打算再投入现总进价的25%做广告宣传,如果要保证每千克利润不变,则此时这种礼品糖果的利润率是____. 16.已知点O是数轴的原点,点A、B、C在数轴上对应的数分别是﹣12、b、c,且b、c满足(b﹣9)2+|c﹣15|=0,动点P从点A出发以2单位/秒的速度向右运动,同时点Q从点C出发,以1个单位/秒速度向左运动,O、B两点之间为“变速区”,规则为从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速,从点B运动到点O期间速度变为原来的3倍,之后立刻恢复原速,运动时间为 _____秒时,P、Q两点到点B的距离相等. 17.如图,数轴上的O点为原点,A点表示的数为,动点P从O点出发,按以下规律跳动:第1次从O点跳动到OA的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处,…,第n次从点跳动到的中点处,按照这样的规律继续跳动到点,,,…,(,n是整数)处,那么点所表示的数为_________. 18.在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,判断戊同学手里拿的两张卡片上的数字是________. 19.数学活动课上,小云和小王在讨论涂老师出示的一道代数式求值问题:题目:已知,,求代数式的值.小云:哈哈!两个方程有三个未知数,不能求具体字母的值.不过,好在两个方程以及所求值代数式中p,q互换都不受影响小王:嗯,消元思想,肯定要用;运用整体思想把关于p,q的对称式,等优先整体考虑,运算应该会简便.通过你的运算,代数式的值为___________. 20.甲、乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度的3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度的4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转________周,时针和分针第一次相遇.21.十八世纪伟大的数学家欧拉证明了简单多面体中顶点数(v),面数(f),棱数(e)之间存在一个有趣的数量关系:v+f﹣e=2,这就是著名的欧拉定理.而正多面体,是指多面体的各个面都是形状大小完全相同的的正多边形,虽然多面体的家族很庞大,可是正多面体的成员却仅有五种,它们是正四面体、正六面体、正八面体、正十二面体和正二十面体,那今天就让我们来了解下这几个立体图形中的“天之骄子”:(1)如图1,正四面体共有______个顶点,_______条棱.(2)如图2,正六面体共有______个顶点,_______条棱.(3)如图3是某个方向看到的正八面体的部分形状(虚线被隐藏),正八面体每个面都是正三角形,每个顶点处有四条棱,那么它共有_______个顶点,_______条棱.(4)当我们没有正12面体的图形时,我们可以根据计算了解它的形状:我们设正12面体每个面都是正n(n≥3)边形,每个顶点处有m(m≥3)条棱,则共有12n÷2=6n条梭,有12n÷m=个顶点.欧拉定理得到方程:+12﹣6n=2,且m,n均为正整数,去掉分母后:12n+12m﹣6nm=2m,将n看作常数移项:12m﹣6nm﹣2m=﹣12n,合并同类项:(10﹣6n)m=﹣12n,化系数为1:m=,变形:,=,=,=,=.分析:m(m≥3),n(n≥3)均为正整数,所以是正整数,所以n=5,m=3,即6n=30,.因此正12面体每个面都是正五边形,共有30条棱,20个顶点.请依据上面的方法或者根据自己的思考得出:正20面体共有_____条棱;_______个顶点. 22.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即:1,1,2,3,5,8,13,21,34,…实际生活中及现代物理与化学等领域也有着广泛的应用,若斐波那契数列中的第n个数记为,则与斐波那契数列中的第________个数相同. 23.如图,将一个半径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A到达点的位置,则点表示的数是 _______;若起点A开始时是与—1重合的,则滚动2周后点表示的数是______. 24.如图,等边三角形的周长为cm,P,Q两点分别从B,C两点时出发,P以6cm/s的速度按顺时针方向在三角形的边上运动,点Q以14cm/s的速度按逆时针方向在三角形的边上运动.设P,Q两点第一次在三角形的顶点处相遇的时间为,第二次在三角形顶点处相遇的时间为,则=_____________. 25.已知关于的方程的解为x=4,那么关于的方程的解为___________.
相关试卷
这是一份专练06 动角问题(B卷解答题)-七年级数学上学期期末专项训练(北师大版,成都专用),文件包含专练06动角问题B卷解答题解析版docx、专练06动角问题B卷解答题原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份专练05 动角问题(A卷解答题)-七年级数学上学期期末专项训练(北师大版,成都专用),文件包含专练05动角问题A卷解答题解析版docx、专练05动角问题A卷解答题原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份专练04 线段或数轴上的动点问题(B卷解答题)-七年级数学上学期期末专项训练(北师大版,成都专用),文件包含专练04线段或数轴上的动点问题B卷解答题解析版docx、专练04线段或数轴上的动点问题B卷解答题原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。