初中数学北师大版八年级下册第二章 一元一次不等式和一元一次不等式组6 一元一次不等式组同步练习题
展开第5讲 不等式组的应用
知识点1 实际应用类问题
对具有多种不等关系的问题,应考虑列一元一次不等式组,并求解.
一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:
(1)分析题意,找出不等关系;
(2)设未知数,列出不等式组;
(3)解不等式组;
(4)从不等式组的解集中找出符合题意的答案;
(5)作答.
【典例】
例1 (2020春•蔡甸区校级月考)在今年的新冠疫情期间,政府紧急组织一批物资送往武汉.现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.
(1)求食品和矿泉水各有多少箱?
(2)现计划租用A、B两种货车共10辆,一次性将所有物资送到群众手中,已知A种货车最多可装食品40箱和矿泉水10箱,B种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案?
(3)在(2)条件下,A种货车每辆需付运费600元,B种货车每辆需付运费450元,政府应该选择哪种方案,才能使运费最少?最少运费是多少?
【方法总结】
本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费.
例2 (2020春•汉阳区期末)某商店购进甲、乙两种商品,每件甲商品的进货价比每件乙商品的进货价高40元,已知15件甲商品的进货总价比26件乙商品的进货总价低60元.
(1)求甲、乙每件商品的进货价;
(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于8080元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于9250元,问共有几种进货方案?
(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?
【方法总结】
本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用一次函数的性质,解决最值问题.
【随堂练习】
1.(2020秋•岳麓区校级月考)校园体育节的来临,博才中学决定搭配A、B两种园艺造型共50个,最多可以提供385盆甲种花卉和235盆乙种花卉.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.
(1)八年级课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?
2.(2020春•宜春期末)某小区为激励更多居民积极参与“分类适宜,垃圾逢春”活动,决定购买拖把和扫帚作为奖品,奖励给垃圾分类表现优异的居民.若购买3把拖把和2把扫帚共需80元,购买2把拖把和1把扫帚共需50元.
(1)请问拖把和扫帚每把各多少元?
(2)现准备购买拖把和扫帚共200把,且要求购买拖把的费用不低于购买扫帚的费用,所有购买的资金不超过2690元,问有几种购买方案,哪种方案最省钱?
知识点2 表格图形类问题
在不等式组的应用问题中,表格图形类问题也是常考的重点,与实际应用问题类似,这类问题只是把一些条件用表格或者图形的形式展示出来,在做题过程中,我们需要先转换条件,再计算.
【典例】
例1(2020秋•武汉月考)某超市看好A,B两种水果的市场价值,决定每天购进A,B两种水果共100千克,经调查这两种水果的进价及售价如表所示,设购买A种水果x千克(x为整数).
种类 | A | B |
进价/元 | 10 | 14 |
售价/元 | 16 | 18 |
(1)用含有x的式子表示:该超市每天投入资金_________(元),每天利润_________(元);(请直接写出结果)
(2)若该超市每天投入资金不少于1160元,每天利润又不少于514元,则共有几种不同的购买方案?
(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的A种水果每千克捐出2a元,B种水果每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.
【方法总结】
本题考查了一元一次不等式组的应用、列代数式以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出各量;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,正确列出一元一次不等式.
例2(2020春•昆明期末)某县为了推进“厕所革命”,改善农村生活卫生条件,雨甸村委会计划为400户居民修建A、B两种型号的三级污水处理厕所共25个,预计使用资金60万元(资金由政府出资一部分,其余由各户筹集).
三级污水处理厕所的型号、修建费用、可供使用的户数如下表:
三级污水处理厕所 | 修建费用(万元/个) | 可供使用户数 |
A型 | 3 | 20 |
B型 | 2 | 15 |
(1)按计划可以修建A、B两种型号的三级污水处理厕所各几个?
(2)如果政府批给该村委会修建A型三级污水处理厕所不超过7个,求出满足要求的所有修建方案.
(3)在(2)的所有方案中,哪种方案最省钱?如果政府出资39万元,每户居民平均至少应筹集多少钱?
【方法总结】
本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
【随堂练习】
1.(2020春•潜山市期末)为举办蔬菜博览会,某地有关部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉情况如下表所示:
造型 | 甲 | 乙 |
A | 90盆 | 30盆 |
B | 40盆 | 100盆 |
结合上述信息,解答下列问题
(1)设需要搭配x个A种造型,则需要搭配_________个B种造型;
(2)符合题意的搭配方案有哪几种?
(3)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,试说明选用(1)中哪种方案成本最低?
2.(2020•锦州二模)为了让农民文化生活更加丰富多彩,某村决定修建文化广场,计划在一部分广场地面铺设相同大小规格的红色和白色地砖.经过市场调查,获取地砖市场相关信息如下:
| 购买数量低于5000块 | 购买数量不低于5000块 |
红色地砖 | 原价销售 | 原价的八折销售 |
白色地砖 | 原价销售 | 原价的九折销售 |
(1)如果购买红色地砖40块,白色地砖60块,共需付款920元;如果购买红色地砖50块,白色地砖35块,共需付款750元,求红色地砖与白色地砖的原价各是多少元?
(2)经过测算,修建这个文化广场需要购买两种地砖共计12000块,其中白色地砖的数量不少于红色地砖的数量的一半,且白色地砖的数量不多于7000块,求购买红色地砖与白色地砖各多少块时,付款最少.
知识点3 新定义类问题
【典例】
例1(2020春•润州区期末)先阅读短文,然后回答短文后面所给出的问题:
对于三个数a、b、c中,我们给出符号来表示其中最大(小)的数,规定min{a,b,c}表示这三个数中最小的数,max{a,b,c}表示这三个数中最大的数.(注:取英文单词minimum(最少的)、maximum(最多的)前三个字母)
例如:min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;min{﹣1,2,a},
(1)min{﹣2014,﹣2015,﹣2016}=_________;max{2,x2+2,2x}=_________;
(2)若max{2,x+1,2x}=2x,求x的取值范围;
(3)若min{4,x+4,4﹣x}=max{2,x+1,2x},求x的值.
【方法总结】
本题主要考查新定义下解不等式组和一元一次方程的能力,根据新定义列出不等式组和一元一次方程是根本,由已知等式找到x的两个分界点以准确分类讨论是解题的关键.
【随堂练习】
1.(2019秋•重庆月考)阅读以下材料:
对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{﹣1,2,3};min{﹣1,2,3}=﹣1;
min{﹣1,2,a}
(1)若min{2,2x+2,4﹣2x}=2,求x的取值范围;
(2)如果M{2,x+1,2x}=min{4,3,2x},求x的值.
2.(2020春•椒江区期末)规定min(m,n)表示m,n中较小的数(m,n均为实数,且mn),例如:min{3,﹣1}=﹣1,、min据此解决下列问题:
(1)min;
(2)若min2,求x的取值范围;
(3)若min{2x﹣5,x+3}=﹣2,求x的值.
综合运用
1.(2020秋•中原区校级期中)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.
(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.
(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为整数),求有哪几种购买方案.
(3)在(2)的条件下,求超市在获得的利润的最大值.
2.(2020秋•开福区校级期中)为更好地推进长沙市生活垃圾分类工作,改善城市生态环境,2019年12月17日,长沙市政府召开了长沙市生活垃圾分类推进会,意味着长沙垃圾分类战役的全面打响.某小区准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.
(1)每个A型垃圾箱和B型垃圾箱分别是多少元?
(2)若该小区物业计划用低于2150元的资金购买A、B两种型号的垃圾箱共20个,且至少购买6个B型垃圾箱,请问有几种购买方案?
3.(2020春•三水区期末)三水某工厂最近准备复工复产,需要面向社会招聘A,B两个工种的工人共150人.现要求B工种的人数不少于A工种人数的2倍,且B工种的人数比A工种人数多出的数量不超过54人.请回答以下问题:
(1)若设A工种工人人数为x,那么B工种工人人数为____________________;
(2)请利用不等式的知识求出招聘的所有方案;
(3)若A,B两个工种的工人的月工资分别是5000和8000元,怎样招聘可使每月所付的工资总额最少,最少工资总额是多少?
4.(2020春•昭通期末)某工厂计划生产A,B两种产品共10件,其生产成本和利润如表:
产品种类 | A | B |
成本(万元/件) | 3 | 5 |
利润(万元/件) | 1 | 2 |
(1)若工厂计划获利13万元,问A,B两种产品应分别生产多少件?
(2)若工厂投入资金不超过45万元,且获利不少于15万元,问该工厂有哪几种生产方案?
(3)在(2)条件下,求出最大利润.
5.(2020春•阜平县期末)某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案?(先填写表格,再设计方案).
设用A型货厢x节,则用B型货厢(50﹣x)节.
货厢号 装货量 货物种类 | A | B |
甲 | 35x吨 | __________吨 |
乙 | __________吨 | __________吨 |
6.(2020•张家界)阅读下面的材料:
对于实数a,b,我们定义符号min{a,b}的意义为:当a<b时,min{a,b}=a;当a≥b时,min{a,b}=b,如:min{4,﹣2}=﹣2,min{5,5}=5.
根据上面的材料回答下列问题:
(1)min{﹣1,3}=__________;
(2)当min时,求x的取值范围.
初中数学北师大版八年级下册4 分式方程同步练习题: 这是一份初中数学北师大版八年级下册4 分式方程同步练习题,文件包含初二数学北师大版春季班第11讲分式方程的应用--尖子班教师版docx、初二数学北师大版春季班第11讲分式方程的应用--尖子班学生版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
北师大版八年级下册2 分式的乘除法课时作业: 这是一份北师大版八年级下册2 分式的乘除法课时作业,文件包含初二数学北师大版春季班第9讲分式的运算--尖子班教师版docx、初二数学北师大版春季班第9讲分式的运算--尖子班学生版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
北师大版八年级下册6 一元一次不等式组测试题: 这是一份北师大版八年级下册6 一元一次不等式组测试题,文件包含初二数学北师大版春季班第5讲不等式组的应用--提高班教师版docx、初二数学北师大版春季班第5讲不等式组的应用--提高班学生版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。