冀教版八年级上册第十三章 全等三角形13.4 三角形的尺规作图教学课件ppt
展开第十三章 全等三角形
13.4 三角形的尺规作图
教学目标 1.会写出作三角形的已知、求作; 2.会利用尺规作三角形; 3.知道作图的依据,会利用两个三角形全等的条件解释作图的合理性. 教学重难点 重点:会写出作三角形的已知、求作,并知道作图的依据; 难点:会利用尺规作三角形. 教学过程 导入新课 尺规作三角形 小明书上的三角形被墨迹污染了一部分,他想在作业本上画出一个与书上完全一样的三角形,他该怎么办?你能帮帮他吗? 探究新知 尺规作图 问题:我们前面所画的图形大都是用刻度尺、三角尺、量角器和圆规等各种工具画出的.你可以用没有刻度的直尺和圆规作图吗? 定义:实际上,只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图. 这种作图方法不必用具体数值,只按给定图形进行再作图.这也是它与画图的区别所在.我们已经学过的尺规作图有:作一条线段等于已知线段;作一个角等于已知角,在这个基础上我们可以用尺规作三角形了. 例 已知三边,用尺规作三角形. 作图前先写出已知、求作. 已知:如图,已知线段 a,b,c. 求作:△ABC,使AB=c,BC=a,AC=b. 教师引导,学生分析:先作一条线段等于已知线段,作AB=c,再以点A为圆心,b为半径画弧,以点B为圆心,a为半径画弧,两弧的交点就是点C. 请同学们按照以下步骤完成作图. 作法: 第一步:作线段AB等于c.
第三步:以点B 为圆心,a为半径画弧,两弧交于点C. 第四步:连接AC,BC,△ABC即为所求. 学生作图,教师巡视指导. 做完后,请问:这样作图的原理是什么? 学生思考并回答,教师评价.(SSS) 练习: 已知三角形的两边及其夹角,求作这个三角形. 教师提示:先写出已知和求作,再用尺规作图. 学生独立完成,教师评价. 已知:线段a, c,. 求作:△ABC,使BC=a,AB=c,∠ABC=. 作法:(1)作一条线段BC=a; (2)以B为顶点,以BC为一边作 ; (3)在射线BD上截取线段BA=c; (4)连接AC.△ABC就是所求作的三角形. 这个作三角形的原理是SAS. 归纳:由三角形全等的判定可以知道,每一种判定两个三角形全等的条件(SSS,SAS,ASA,AAS)都只能作出唯一的三角形. 课堂练习 1.兰兰书上的三角形被墨迹污染了一部分(如图1),已知角的两边长分别为3 cm,5 cm,她想利用直尺和圆规在作业本上画一个与书上完全一样的三角形,她应该运用三角形全等的依据为( ) A. SSS B. SAS C. ASA D. AAS
图1 图2 2.已知三角形的两边及其夹角,求作这个三角形时,第一步应为( ) A.作一条线段等于已知线段 B.作一个角等于已知角 C.作两条线段等于已知三角形的边,并使其夹角等于已知角 D.先作一条线段等于已知线段或先作一个角等于已知角 3.如图2,在△ABC中,BC=6厘米,AC=3厘米, AB=4厘米,请你画出与△ABC全等的三角形. 学生独立完成,教师评价. 参考答案 1.B 2.D 3.作法:(1)作线段BC=6厘米; (2) 以B为圆心,4厘米为半径画弧; (3) 以C为圆心, 3厘米为半径画弧,两弧相交于点A; (4)连接AB,AC,△ABC即为所求. 课堂小结 1.尺规作图; 2.尺规作三角形. 布置作业 完成教材第53页练习1,2.
板书设计 13.4 三角形的尺规作图
| 教学反思
教学反思
教学反思
|
冀教版八年级上册16.1 轴对称教学ppt课件: 这是一份冀教版八年级上册16.1 轴对称教学ppt课件,文件包含教学课件八上·冀教·161轴对称pptx、1611docx等2份课件配套教学资源,其中PPT共47页, 欢迎下载使用。
初中数学冀教版八年级上册17.5 反证法教学课件ppt: 这是一份初中数学冀教版八年级上册17.5 反证法教学课件ppt,文件包含教学课件八上·冀教·175反证法pptx、175docx等2份课件配套教学资源,其中PPT共17页, 欢迎下载使用。
初中数学冀教版八年级上册第十四章 实数14.2 立方根教学课件ppt: 这是一份初中数学冀教版八年级上册第十四章 实数14.2 立方根教学课件ppt,文件包含教学课件八上·冀教·142立方根pptx、142docx等2份课件配套教学资源,其中PPT共19页, 欢迎下载使用。