所属成套资源:备战中考数理化——中考数学模拟卷(48套)
备战中考数理化——中考数学模拟试卷 (7)(含答案)
展开
这是一份备战中考数理化——中考数学模拟试卷 (7)(含答案),共24页。试卷主要包含了客运量结构变化等内容,欢迎下载使用。
备战中考数理化——中考数学模拟试卷7(含答案)
一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)(本题共16分,每小题2分)
1.(2分)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( )
A.3.5×107 B.3.5×108 C.3.5×109 D.3.5×1010
2.(2分)如图是某个几何体的展开图,该几何体是( )
A.三棱柱 B.圆锥 C.四棱柱 D.圆柱
3.(2分)实数a,b,c,d在数轴上的对应点的位置如图所示.若b+d=0,则下列结论中正确的是( )
A.b+c>0 B. C.ad>bc D.|a|>|d|
4.(2分)已知l1∥l2,一个含有30°角的三角尺按照如图所示位置摆放,则∠1+∠2的度数为( )
A.90° B.120° C.150° D.180°
5.(2分)如果y=﹣x+3,且x≠y,那么代数式的值为( )
A.3 B.﹣3 C. D.﹣
6.(2分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B.
C. D.
7.(2分)下面的统计图反映了我国出租车(巡游出租车和网约出租车)客运量结构变化.
根据统计图提供的信息,下列推断合理的是( )
A.2018年与2017年相比,我国网约出租车客运量增加了20%以上
B.2018年,我国巡游出租车客运量占出租车客运总量的比例不足60%
C.2015年至2018年,我国出租车客运的总量一直未发生变化
D.2015年至2018年,我国巡游出租车客运量占出租车客运总量的比例逐年增加
8.(2分)如图1,荧光屏上的甲、乙两个光斑(可看作点)分别从相距8cm的A,B两点同时开始沿线段AB运动,运动过程中甲光斑与点A的距离S1(cm)与时间t(s)的函数关系图象如图2,乙光斑与点B的距离S2(cm)与时间t(s)的函数关系图象如图3,已知甲光斑全程的平均速度为1.5cm/s,且两图象中△P1O1Q1≌P2Q2O2,下列叙述正确的是( )
A.甲光斑从点A到点B的运动速度是从点B到点A的运动速度的4倍
B.乙光斑从点A到B的运动速度小于1.5cm/s
C.甲乙两光斑全程的平均速度一样
D.甲乙两光斑在运动过程中共相遇3次
二.填空题(本题共16分,每小题2分)
9.(2分)当x= 时,代数式的值为0.
10.(2分)已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值: .
11.(2分)如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于 .
12.(2分)2019年2月,全球首个5G火车站在上海虹桥火车站启动,虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输8千兆数据,5G网络快720秒,求这两种网络的峰值速率,设4G网络的峰值速率为每秒传输x千兆,依题意,可列方程为 .
13.(2分)已知Rt△ABC位于第二象限,点A(﹣1,1),AB=BC=2,且两条直角边AB、BC分别平行于x轴、y轴,写出一个函数y=(k≠0),使它的图象与△ABC有两个公共点,这个函数的表达式为 .
14.(2分)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.如果∠ACB=75°,圆O的半径为2,则BD的长为 .
15.(2分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,A(﹣3,0),B(4,0),边AD长为5.现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为D′),相应地,点C的对应点C′的坐标为 .
16.(2分)电影公司随机收集了2000部电影的有关数据,经分类整理得到如表:
电影类型
第一类
第二类
第三类
第四类
第五类
第六类
电影部数
140
50
300
200
800
510
好评率
0.4
0.2
0.15
0.25
0.2
0.1
注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.
(1)如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是 ;
(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大?
答: .
三.解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题5分;第27,28题每小题5分)
17.(5分)计算:(2014﹣π)0﹣()﹣2﹣2sin60°+||
18.(5分)解不等式组:,并在数轴上表示出其解集.
19.(5分)下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程.
已知:如图1,直线l及直线l外一点P.
求作:直线PQ,使PQ∥l.
作法:如图2,
①在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A、B两点;
②连接PA,以B为圆心,AP长为半径画弧,交半圆于点Q;
③作直线PQ;
所有直线PQ就是所求作的直线.
根据小明设计的尺规作图过程.
(1)使用直尺和圆规,补全图形(保留作图痕迹).
(2)完成下面的证明:
证明:连接PB、QB.
∵PA=QB,
∴= .
∴∠PBA=∠QPB( )(填推理的依据).
∴PQ∥l( )(填推理的依据).
20.(5分)如图,在四边形ABCD中,AB∥CD,AB=BC=2CD,E为对角线AC的中点,F为边BC的中点,连接DE、EF.
(1)求证:四边形CDEF为菱形;
(2)连接DF交AC于点G,若DF=2,CD=,求AD的长.
21.(5分)已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.
(1)求m的取值范围;
(2)当m取满足条件的最大整数时,求方程的根.
22.(5分)如图,在平面直角坐标系xOy中,A(0,3),B(1,0),连接BA,将线段BA绕点B顺时针旋转90°得到线段BC,反比例函数y=的图象G经过点C.
(1)请直接写出点C的坐标及k的值;
(2)若点P在图象G上,且∠POB=∠BAO,求点P的坐标;
(3)在(2)的条件下,若Q(0,m)为y轴正半轴上一点,过点Q作x轴的平行线与图象G交于点M,与直线OP交于点N,若点M在点N左侧,结合图象,直接写出m的取值范围.
23.(6分)如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.
(1)根据折线图把下列表格补充完整;
运动员
平均数
中位数
众数
甲
8.5
9
乙
8.5
(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.
24.(6分)如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD,过点C作CE⊥DB,垂足为E,直径AB与CE的延长线相交于F点.
(1)求证:CF是⊙O的切线;
(2)当BD=,sinF=时,求OF的长.
25.(6分)如图1,P是矩形ABCD内部的一定点,M是AB边上一动点,连接MP并延长与矩形ABCD的一边交于点N,连接AN.已知AB=6cm,设A,M两点间的距离为xcm,M,N两点间的距离为y1cm,A,N两点间的距离为y2cm.小欣根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.
下面是小欣的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;
x/cm
0
1
2
3
4
5
6
y1/cm
6.30
5.40
4.22
3.13
3.25
4.52
y2/cm
6.30
6.34
6.43
6.69
5.75
4.81
3.98
(2)在同一平面直角坐标系xOy中,描出以补全后的表中各组对应值所对应的点(x,y1),并画出函数y1的图象;
(3)结合函数图象,解决问题:
当△AMN为等腰三角形时,AM的长度约为 cm.
26.(6分)在平面直角坐标系xOy中,直线y=kx+1(k≠0)经过点A(2,3),与y轴交于点B,与抛物线y=ax2+bx+a的对称轴交于点C(m,2).
(1)求m的值;
(2)求抛物线的顶点坐标;
(3)N(x1,y1)是线段AB上一动点,过点N作垂直于y轴的直线与抛物线交于点P(x2,y2),Q(x3,y3)(点P在点Q的左侧).若x2<x1<x3恒成立,结合函数的图象,求a的取值范围.
27.(7分)如图1,在正方形ABCD中,点F在边BC上,过点F作EF⊥BC,且FE=FC(CE<CB),连接CE、AE,点G是AE的中点,连接FG.
(1)用等式表示线段BF与FG的数量关系是 ;
(2)将图1中的△CEF绕点C按逆时针旋转,使△CEF的顶点F恰好在正方形ABCD的对角线AC上,点G仍是AE的中点,连接FG、DF.
①在图2中,依据题意补全图形;
②求证:DF=FG.
28.(7分)在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.
(1)当⊙O的半径为2时,
①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是 .
②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.
(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.
2020年中考数学模拟试卷
参考答案与试题解析
一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)(本题共16分,每小题2分)
1.【解答】解:350 000 000=3.5×108.
故选:B.
2.【解答】解:观察图形可知,这个几何体是三棱柱.
故选:A.
3.【解答】解:由数轴上的点表示的数右边的总比左边的大,得
a<b<0<c<d,
A、b+d=0,∴b+c<0,故A不符合题意;
B、<0,故B不符合题意;
C、ad<bc<0,故C不符合题意;
D、|a|>|b|=|d|,故D正确;
故选:D.
4.【解答】解:如图,
过直角顶点作l3∥l1,
∵l1∥l2,
∴l1∥l2∥l3,
∴∠1=∠3,∠2=∠4,
∴∠1+∠2=∠3+∠4=90°.
故选:A.
5.【解答】解:
=
=
=x+y,
∵y=﹣x+3,且x≠y,
∴原式=x﹣x+3=3.
故选:A.
6.【解答】解:A、是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项正确.
故选:D.
7.【解答】解:2018年与2017年相比,我国网约出租车客运量增加了:(200﹣157)÷200=21.5%,故选项A正确,
2018年,我国巡游出租车客运量占出租车客运总量的比例超过60%,故选项B错误,
2015年至2018年,我国出租车客运的总量发生了变化,故选项C错误,
2015年至2018年,我国巡游出租车客运量占出租车客运总量的比例逐年减小,故选项D错误,
故选:A.
8.【解答】解:∵甲到B所用时间为t0s,从B回到A所用时间为4t0﹣t0=3t0
∵路程不变
∴甲光斑从A到B的速度是从B到A运动速度的3倍
∴A错误
由于,△O1P1Q1≌△O2P2Q2
∵甲光斑全程平均速度1.5cm/s
∴乙光斑全程平均速度也为1.5cm/s
∵乙由B到A时间为其由A到B时间三倍
∴乙由B到A速度低于平均速度,则乙由A到B速度大于平均速度
∴B错误
由已知,两个光斑往返总时间,及总路程相等,则两个光斑全程的平均速度相同
∴C正确
根据题意,分别将甲、乙光斑与点A的距离与时间的函数图象画在下图中,两个函数图象交点即为两个光斑相遇位置
故可知,两个光斑相遇两次,故D错误.
故选:C.
二.填空题(本题共16分,每小题2分)
9.【解答】解:由题意知x﹣2=0且x≠0.
解得x=2.
故答案是:2.
10.【解答】解:∵抛物线y1=ax2的开口向上,
∴a>0,
又∵它的开口比抛物线y2=3x2+2的开口小,
∴|a|>3,
∴a>3,
取a=4即符合题意,
故答案为:4(答案不唯一).
11.【解答】解:连接OC,如图,
∵△ABC为等边三角形,
∴∠AOC=120°,S△AOB=S△AOC,
∴图中阴影部分的面积=S扇形AOC==π.
故答案为π.
12.【解答】解:设4G网络的峰值速率为每秒传输x千兆,则5G网络的峰值速率为每秒传输10x千兆,
根据题意,得﹣=720.
故答案为﹣=720.
13.【解答】解:B的坐标是(﹣3,1),C的坐标是(﹣3,3).
则这个函数的解析式可以是:y=﹣.(答案不唯一).
故答案是:y=﹣.
14.【解答】解:如图,
连接OB,
∵∠DOC=2∠ACD=90°.
∴∠ACD=45°,
∵∠ACB=75°,
∴∠BCD=∠ACB﹣∠ACD=30°,
∵OC=OD,∠DOC=90°,
∴∠DCO=45°,
∴∠BCO=∠DCO﹣∠BCD=15°,
∵OB=OC,
∴∠CBO=∠BCO=15°,
∴∠BOC=150°,
∴∠DOB=∠BOC﹣∠DOC=150°﹣90°=60°,
∵OB=OD,
∴△BOD是等边三角形,
∴BD=OD=2.
故答案为2.
15.【解答】解:由勾股定理,得
OD′==4,
即D′(0,4).
矩形ABCD的边AB在x轴上,
∴四边形ABC′D′是平行四边形,
AD′=BC′,C′D′=AB=4﹣(﹣3)=7,
C′与D′的纵坐标相等,
∴C′(7,4)
故答案为:(7,4).
16.【解答】解:(1)总的电影部数为140+50+300+200+800+510=2000(部),
获得好评的第四类电影:200×0.25=50(部),
故从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率=;
故答案为:;
(2)根据题意得:只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大;
故答案为:只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大.
三.解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题5分;第27,28题每小题5分)
17.【解答】解:原式=1﹣4﹣2×+﹣1=﹣4.
18.【解答】解:,由①得x>3,由②得 x≤5,
故此不等式组的解集为:3<x≤5.
在数轴上表示为:
19.【解答】解:(1)如图所示:
(2)证明:连接PB、QB.
∵PA=QB,
∴=.
∴∠PBA=∠QPB(等弧所对圆周角相等).
∴PQ∥l(内错角相等,两直线平行).
故答案为:,等弧所对圆周角相等,内错角相等,两直线平行.
20.【解答】证明:(1)∵E为对角线AC的中点,F为边BC的中点,
∴EF=AB,EF∥AB,CF=BC,AE=CE
∵AB∥CD
∴AB∥CD∥EF,
∵AB=BC=2CD
∴EF=CF=CD,且AB∥CD∥EF,
∴四边形DEFC是平行四边形,且EF=CF
∴四边形CDEF为菱形;
(2)如图,DF与EC交于点G
∵四边形CDEF为菱形,DF=2,
∴DG=1,DF⊥CE,EG=GC,
∴EG=GC==
∴AE=CE=2EG=
∴AG=AE+EG=4
∴AD==
21.【解答】解:(1)根据题意得m﹣2≠0且△=4m2﹣4(m﹣2)(m+3)>0,
解得m<6且m≠2;
(2)m满足条件的最大整数为5,则原方程化为3x2+10x+8=0,
∴(3x+4)(x+2)=0,
∴x1=﹣,x2=﹣2.
22.【解答】解:(1)过C点作CH⊥x轴于H,如图,
∵线段AB绕点B顺时针旋转90°,得到线段BC,
∴BA=BC,∠ABC=90°,
∵∠ABO+∠CBH=90°,∠ABO+∠BAO=90°,
∴∠BAO=∠CBH,
在△ABO和△BCH中,
∴△ABO≌△BCH(AAS),
∴CH=OB=1,BH=OA=3,
∴C(4,1),
∵点C落在函数y=(x>0)的图象上,
∴k=4×1=4;
(2)过O作OP∥BC交y=的图象于点P,过P作PG⊥x轴于G,
∵∠POG=∠OAB,
∵∠AOB=∠PGO,
∴△OAB∽△OHP,
∴PG:OG=OB:OA=1:3,
∵点P在y=上,
∴3yP•yP=4,
∴yP=,
∴点P的坐标为(2,);
(3)∵Q(0,m),
∴OQ=m,
∵OM∥x轴,与图象G交于点M,与直线OP交于点N,
∴M(,m),N(3m,m),
∵点M在点N左侧,
∴<3m,
∵m>0,
∴m>.
23.【解答】解:(1)补充表格:
运动员
平均数
中位数
众数
甲
8.5
9
9
乙
8.5
8.5
7和10
故答案为:9;8.5;7和10;
(2)答案不唯一,可参考的答案如下:
甲选手:和乙选手的平均成绩相同,中位数高于乙,打出9环及以上的次数更多,打出7环的次数较少,说明甲选手相比之下发挥更加稳定;
乙选手:与甲选手平均成绩相同,打出10环次数和7环次数都比甲多,说明乙射击时起伏更大,但也更容易打出10环的成绩.
24.【解答】解:(1)连接OC.如图1所示:
∵OA=OC,
∴∠1=∠2.
又∵∠3=∠1+∠2,
∴∠3=2∠1.
又∵∠4=2∠1,
∴∠4=∠3,
∴OC∥DB.
∵CE⊥DB,
∴OC⊥CF.
又∵OC为⊙O的半径,
∴CF为⊙O的切线;
(2)连接AD.如图2所示:
∵AB是直径,
∴∠D=90°,
∴CF∥AD,
∴∠BAD=∠F,
∴sin∠BAD=sinF==,
∴AB=BD=6,
∴OB=OC=3,
∵OC⊥CF,
∴∠OCF=90°,
∴sinF==,
解得:OF=5.
25.【解答】解:(1)观察图象可知D(2,4.80),
故答案为4.80.
(2)两个函数图象如图所示:
(3)两个函数与直线y=x的交点为A,B,函数y1与y2的交点为C,
观察图象可知:A(3.3,3.3),B(4.8,4.8),C(5.7,4).
∴△AMN为等腰三角形时,AM的值约为3.3或4.8或5.7.
故答案为3.3或4.8或5.7.
26.【解答】解:(1)∵y=kx+1(k≠0)经过点A(2,3),
∴2k+1=3,解得k=1.
∵直线y=x+1与抛物线y=ax2+bx+a的对称轴交于点C(m,2),
∴m=1.
(2)∵抛物线y=ax2+bx+a的对称轴为x=1,
∴,即b=﹣2a.
∴y=ax2﹣2ax+a=a(x﹣1)2.
∴抛物线的顶点坐标为(1,0).
(3)当a>0时,如图,
若抛物线过点B(0,1),则a=1.
结合函数图象可得0<a<1.
当a<0时,过点N垂直于y轴的直线与抛物线没有交点,不符合题意.
综上所述,a的取值范围是0<a<1.
27.【解答】解:(1)BF=FG,
理由是:如图1,连接BG,CG,
∵四边形ABCD为正方形,
∴∠ABC=90°,∠ACB=45°,AB=BC,
∵EF⊥BC,FE=FC,
∴∠CFE=90°,∠ECF=45°,
∴∠ACE=90°,
∵点G是AE的中点,
∴EG=CG=AG,
∵BG=BG,
∴△AGB≌△CGB(SSS),
∴∠ABG=∠CBG=∠ABC=45°,
∵EG=CG,EF=CF,FG=FG,
∴△EFG≌△CFG(SSS),
∴∠EFG=∠CFG=(360°﹣∠BFE)=(360°﹣90°)=135°,
∵∠BFE=90°,
∴∠BFG=45°,
∴△BGF为等腰直角三角形,
∴BF=FG.
故答案为:BF=FG;
(2)①如图2所示,
②如图2,连接BF、BG,
∵四边形ABCD是正方形,
∴AD=AB,∠ABC=∠BAD=90°,AC平分∠BAD,
∴∠BAC=∠DAC=45°,
∵AF=AF,
∴△ADF≌△ABF(SAS),
∴DF=BF,
∵EF⊥AC,∠ABC=90°,点G是AE的中点,
∴AG=EG=BG=FG,
∴点A、F、E、B在以点G为圆心,AG长为半径的圆上,
∵=,∠BAC=45°,
∴∠BGF=2∠BAC=90°,
∴△BGF是等腰直角三角形,
∴BF=FG,
∴DF=FG.
28.【解答】解:(1)①∵点P1(,0),P2(,),P3(,0),
∴OP1=,OP2=1,OP3=,
∴P1与⊙O的最小距离为,P2与⊙O的最小距离为1,OP3与⊙O的最小距离为,
∴⊙O,⊙O的关联点是P2,P3;
故答案为:P2,P3;
②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,
∴设P(x,﹣x),当OP=1时,
由距离公式得,OP==1,
∴x=,
当OP=3时,OP==3,
解得:x=±;
∴点P的横坐标的取值范围为:﹣≤x≤﹣,或≤x≤;
(2)∵直线y=﹣x+1与x轴、y轴交于点A、B,
∴A(1,0),B(0,1),
如图1,
当圆过点A时,此时,CA=3,
∴C(﹣2,0),
如图2,
当直线AB与小圆相切时,切点为D,
∴CD=1,
∵直线AB的解析式为y=﹣x+1,
∴直线AB与x轴的夹角=45°,
∴AC=,
∴C(1﹣,0),
∴圆心C的横坐标的取值范围为:﹣2≤xC≤1﹣;
如图3,
当圆过点O,则AC=1,∴C(2,0),
如图4,
当圆过点B,连接BC,此时,BC=3,
∴OC==2,
∴C(2,0).
∴圆心C的横坐标的取值范围为:2≤xC≤2;
综上所述;圆心C的横坐标的取值范围为:﹣2≤xC≤1﹣或2≤xC≤2.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2020/4/1 13:26:15;用户:初中校园号;邮箱:wjwl@xyh.com;学号:24424282
相关试卷
这是一份备战中考数理化——中考数学模拟试卷 (39)(含答案),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份备战中考数理化——中考数学模拟试卷 (28)(含答案),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份备战中考数理化——中考数学模拟试卷 (21)(含答案),共20页。试卷主要包含了解答题等内容,欢迎下载使用。