2023年中考苏科版数学一轮复习专题练习-二次函数
展开
这是一份2023年中考苏科版数学一轮复习专题练习-二次函数,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习专题练习二次函数一、选择题1.若二次函数y=x2﹣mx的对称轴是x=﹣3,则关于x的方程x2+mx=7的解是( )A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=72.对于二次函数y=﹣2(x+1)(x﹣3),下列说法正确的是( )A.图象与x轴的交点为(1,0),(﹣3,0) B.图象的对称轴是直线x=﹣2 C.当x<1时,y随x的增大而增大 D.此函数有最小值为83.已知抛物线y=x2﹣4x+3,当0≤x≤m时,y的最小值为﹣1,最大值为3,则m的取值范围为( )A.m≥2 B.0≤m≤2 C.2≤m≤4 D.m≤44.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表给出了以下结论:x …﹣3﹣2﹣1 012345 … y … 12 5 0﹣3﹣4﹣30512…①二次函数y=ax2+bx+c有最小值,最小值为﹣3;②当﹣<x<2时,y<0;③二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴的两侧;④当x<1时,y随x的增大而减小.则其中正确结论有( )A.4个 B.3个 C.2个 D.1个5.如图,抛物线S1与x轴交于点A(﹣3,0),B(1,0),将它向右平移2个单位得新抛物线S2,点M,N是抛物线S2上两点,且MN∥x轴,交抛物线S1于点C,已知MN=3MC,则点C的横坐标为( )A. B. C. D.16.如图二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法中,错误的是( )A.对称轴是直线x= B.当﹣1<x<2时,y<0 C.a+c=b D.a+b>﹣c 第6题 第7题 7.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断:①abc<0, ②a+b+c>0,③2a﹣b<0,④5a﹣c=0,⑤当x<或x>6时,y1>y2.其中正确的个数有( )A.2个 B.3 个 C.4 个 D.5个8.从地面竖直向上抛出一小球,小球的高度y(米)与小球运动的时间x(秒)之间的关系式为y=ax2+bx+c(a≠0).若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是( )A.第8秒 B.第10秒 C.第12秒 D.第15秒二、填空题9.如果开口向下的抛物线y=ax2+5x+4﹣a2(a≠0)过原点,那么a的值是 .10.已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:____________________.11.若抛物线C1:y=x2+mx+2与抛物线C2:y=x2﹣3x+n关于y轴对称,则m+n= .12.二次函数的部分图象如图所示,则使y>0的x的取值范围是 .13.已知抛物线y=(x+1)2+k与x轴交于A、B两点,AB=4,点C是抛物线上一点,如果线段AC被y轴平分,那么点C的坐标为________________________.14.抛物线y=ax2(a≠0)沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线y=x2沿直线y=x平向上平移,平移距离为 时,那么它的“同簇抛物线”的表达式是____________________.15.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是 . 三、解答题16.已知二次函数的解析式是y=x2﹣2x﹣3.(1)与x轴的交点坐标是 ,顶点坐标是 ;(2)画出函数图像,并结合图象回答:当﹣2<x<2时,函数值y的取值范围是 . 17.如图,在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴,y轴的交点分别为(1,0)和(0,﹣3).(1)求此二次函数的表达式;(2)结合函数图象,直接写出当y>﹣3时,x的取值范围. 18.在平面直角坐标系xOy中,已知抛物线y=x2﹣2(k﹣1)x+k2﹣k(k为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值﹣,求k的值. 19.如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A、B,与y轴交于点C(3,0).(1)求m的值和直线BC对应的函数表达式;(2)P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标. 20.二次函数y=﹣x2+(a﹣1)x+a(a为常数)图象的顶点在y轴右侧.(1)写出该二次函数图象的顶点横坐标(用含a的代数式表示);(2)该二次函数表达式可变形为y=﹣(x﹣p)(x﹣a)的形式,求p的值;(3)若点A(m,n)在该二次函数图象上,且n>0,过点(m+3,0)作y轴的平行线,与二次函数图象的交点在x轴下方,求a的范围. 21.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
相关试卷
这是一份中考数学一轮复习考点练习专题12 二次函数(含解析),共14页。试卷主要包含了二次函数的概念,根据图像判断a,b,c的符号,二次函数与一元二次方程的关系,函数平移规律,故答案为8,上述结论中正确的是 等内容,欢迎下载使用。
这是一份2023年中考苏科版数学一轮复习专题提优练习-一次函数和二次函数综合,共7页。
这是一份2023年中考苏科版数学一轮复习专题练习-实数,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。