所属成套资源:【物理模型】高考物理全归纳—模型101专题全套讲练
高考物理模型全归纳 第34讲 单体机械能守恒问题
展开这是一份高考物理模型全归纳 第34讲 单体机械能守恒问题,文件包含第34讲单体机械能守恒问题解析版docx、第34讲单体机械能守恒问题原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
高考物理全归纳——模型专题
在高中物理教学中,引导学生认识、理解和建立“物理模型”,是培养学生创造性思维和创新能力的有效途径。
一、什么是物理模型
自然界中事物与事物之间总是存在着千丝万缕的联系,并都处在不断的变化之中。面对复杂多变的自然界,进行科学研究时,总是遵循这样一条重要的原则,即从简到繁,先易后难,循序渐进,逐次深入。
物理模型有三个类型:(1)物理研究对象的理想化(对象模型);(2)物理条件的理想化(条件模型);(3)物理过程的理想化(过程模型)
二、为什么要建立物理模型
1、帮助学生掌握学习方法 2、落实“过程与方法”的教学目标
3、提高学生解决问题能力
三、如何帮助学生的建立物理模型
(一)提高认识,重视过程:
对研究对象建立理想的物理模型和在研究物理过程中选择最简单的物理模型,在教学中是经常涉及到的,但学生总不能从中得到启示。
(二)概括总结,触类旁通:
新课程提出高中阶段应给学生更多的空间,让学生较独立地进行科学探究,培养学生的自主探究、自主学习、自已解决问题的能力。
第34讲 单体机械能守恒问题
1.(2022·江苏)如图所示,轻质弹簧一端固定,另一端与物块A连接在一起,处于压缩状态.A由静止释放后沿斜面向上运动到最大位移时,立即将物块B轻放在A右侧,A、B由静止开始一起沿斜面向下运动,下滑过程中A、B始终不分离,当A回到初始位置时速度为零.A、B与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则( )
A.当上滑到最大位移的一半时,A的加速度方向沿斜面向下
B.A上滑时,弹簧的弹力方向不发生变化
C.下滑时,B对A的压力先减小后增大
D.整个过程中A、B克服摩擦力所做的总功大于B的重力势能减小量
2.(2022·山东)我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭。如图所示,发射舱内的高压气体先将火箭竖直向上推出,火箭加速度接近零时再点火飞向太空。从火箭开始运动到点火的过程中( )
A.火箭的加速度为零时,动能最大
B.高压气体释放的能量全部转化为火箭的动能
C.高压气体对火箭推力的冲量等于火箭动量的增加量
D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量
一.知识回顾
1重力势能
(1)定义:物体由于被举高而具有的能量,叫作重力势能。
(2)表达式:Ep=mgh,其中h是相对于参考平面的高度。
(3)特点:
①系统性:重力势能是地球与物体所组成的“系统”所共有的。
②相对性:重力势能的数值与所选参考平面有关。
③标量性:重力势能是标量,正负表示大小。
(4)重力做功的特点
①物体运动时,重力对它做的功只跟它的起点和终点的位置有关,而跟物体运动的路径无关。
②重力做功不引起物体机械能的变化。
(5)重力做功与重力势能变化的关系
①)定性关系:重力对物体做正功,重力势能减小,重力对物体做负功,重力势能增大。
②定量关系:重力对物体做的功等于物体重力势能的减少量,
即WG=Ep1-Ep2=-(Ep2-Ep1)=-ΔEp。
③重力势能的变化量是绝对的,与参考平面的选取无关。
2. 弹性势能
(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,这种势能叫作弹性势能。
(2)大小:弹簧的弹性势能跟弹簧的形变量及劲度系数有关,形变量越大,劲度系数越大,弹性势能就越大。
(3)弹力做功与弹性势能变化的关系
弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系,用公式表示:W=-ΔEp。
3. 机械能守恒定律
(1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变。
(2)常用的三种表达式
①守恒式: E1=E2或Ek1+Ep1=Ek2+Ep2。E1、E2分别表示系统初末状态时的总机械能。
②转化式:ΔEk=-ΔEp或ΔEk增=ΔEp减。表示系统势能的减少量等于动能的增加量。
③转移式:ΔEA=-ΔEB或ΔEA增=ΔEB减。表示系统只有A、B两物体时,A增加的机械能等于B减少的机械能。
(3)机械能守恒的条件
①系统只受重力或弹簧弹力的作用,不受其他外力.
②系统除受重力或弹簧弹力作用外,还受其他内力和外力,但这些力对系统不做功.
③系统跟外界没有发生机械能的传递,系统内、外也没有机械能与其他形式的能发生转化.
(4)机械能保持不变判断方法
①用定义判断:若物体动能、势能均不变,则机械能不变。若一个物体动能不变、重力势能变化,或重力势能不变、动能变化或动能和重力势能同时增加(减少),其机械能一定变化。
②用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功,机械能守恒。
③用能量转化来判断:若物体或系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体或系统机械能守恒。
6.单体机械能守恒问题解题的一般步骤
在处理单个物体机械能守恒问题时,要选取方便的机械能守恒定律方程形式(Ek1+Ep1=Ek2+Ep2、ΔEk=-ΔEp)进行求解。
二.例题精析
例1.如图所示,在水平面上有一固定的粗糙轨道,在轨道的末端连一半径为R的半圆轨道,与水平轨道相切于B点。一质量为m的小物体在大小为F=2mg的外力作用下从轨道上的A点由静止出发,运动至B点时撤掉外力,物体沿圆轨道内侧恰好运动至最高点C,最后回到出发点A。物体与水平轨道间的动摩擦因数μ=0.5
,物体与半圆轨道间的动摩擦因数未知,当地重力加速度为g。以下关系式正确的是( )
A.物体在AB间运动时克服摩擦阻力做功W2=mgR
B.外力F做功W1=2mgR
C.物体在C点的动能为零
D.物体在AC间运动时产生的热量为
例2.如图所示,倾角为30°的斜面固定在水平地面上,其底端N与光滑的水平地面平滑连接,N点右侧有一竖直固定挡板。质量为0.8kg的小物块b静止在地面上,现将质量为0.4kg的小物块a由斜面上的M点静止释放。已知MN=1.5m,a、b与斜面之间的动摩擦因数均为,a、b碰撞时间极短,碰后黏在一起运动不再分开,a、b整体与挡板碰撞过程中无机械能损失。取g=10m/s2,则( )
A.物块a第一次运动到N点时的动能为3.6J
B.a、b碰撞过程中系统损失的机械能为0.6J
C.b与挡板第一次碰撞时,挡板对b的冲量大小为1.2N•s
D.整个运动过程中,b在斜面上运动的路程为0.25m
例3.如图甲所示,绷紧的水平传送带始终以恒定速率v1运行,初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带。若从小物块滑上传送带开始计时,小物块在传送带上运动的v﹣t图象(以地面为参考系)如图乙所示。已知v2>v1,物块和传送带间的动摩擦因数为μ,物块的质量为m。则( )
A.t2时刻,小物块离A处的距离最大
B.0﹣t2时间内,小物块的加速度方向先向右后向左
C.0﹣t2时间内,因摩擦产生的热量为μmg[]
D.0﹣t2时间内,物块在传送带上留下的划痕为
三.举一反三,巩固练习
- 某同学家住一小区18楼。该同学两次乘电梯从1楼到18楼,第一次从1楼直达(中途未停)18楼,电梯对该同学做功W1;第二次从1楼到18楼过程中,有其他人在6楼上下,全过程电梯对该同学做功W2。该同学两次乘电梯时质量相同,则关于W1、W2大小关系,下列说法正确的是( )
A.W1=W2 B.W1>W2
C.W1<W2 D.条件不足,无法判断
- 如图所示,质量为m的小球静止在竖直放置的轻弹簧上,小球和弹簧拴接在一起。现用大小为mg的拉力F竖直向上拉动小球,当小球向上运动的速度达到最大时撤去拉力。已知弹簧始终处于弹性限度内,弹簧的劲度系数为k,重力加速度为g。下列说法正确的是( )
A.小球运动到最高点时,弹簧处于压缩状态
B.小球返回到初始位置时的速度大小为
C.小球由最高点返回到初始位置的过程,小球的动能先增加后减少
D.小球由最高点运动到最低点的过程,小球和弹簧组成的系统势能一直减小
- 如图,物块以某一初速度于固定斜面底端冲上斜面,一段时间后物块返回出发点。若物块和斜面间动摩擦系数处处相同。在物块上升、下降过程中,运动时间分别用t1、t2表示,损失的机械能分别用ΔE1、ΔE2表示。则( )
A.t1<t2,ΔE1=ΔE2 B.tl<t2,ΔE1<ΔE2
C.tl=t2,ΔE1=ΔE2 D.tl>t2,ΔE1>ΔE2
- 质量为m的重物挂在轻质弹性绳上。如果对重物施加一个向下的力,且其大小从0开始缓慢增大,当力的大小达到F1时绳恰被拉断;如果从一开始向下施加某一恒力,绳将被拉断的最小值为F2,下列说法正确的是( )
A.绳被拉断时,弹性绳中的张力为F1
B.绳被拉断时,弹性绳中的张力为F2+mg
C.F2与F1的大小关系为F1=2F2
D.F2作用下,弹性绳与重物组成系统的机械能先增大后减小
- 简易儿童蹦极装置如图所示。活动开始前,先给小朋友绑上安全带,然后将弹性绳拉长后固定在小朋友身上,并通过其它力作用使小朋友停留在蹦床上。当撤去其它力后,小朋友被“发射”出去冲向高空,小朋友到达最高点然后下落到B点时,弹性绳恰好为原长,然后继续下落至最低点A。若小朋友可视为质点,并始终沿竖直方向运动,忽略弹性绳质量与空气阻力,则小朋友( )
A.在C点时的加速度大小为0
B.在A点时处于平衡状态
C.在B点时处于失重状态
D.在下落过程中机械能守恒
- 如图甲所示,一质量为2kg的物体静止在水平地面上,水平推力F随位移x变化的关系如图乙所示,已知物体与地面间的动摩擦因数为0.1,取g=10m/s2,下列说法正确的是( )
A.物体运动的最大速度为m/s
B.在运动中由于摩擦产生的热量为6J
C.物体在水平地面上运动的最大位移是4.5m
D.物体先做加速运动,推力撤去时开始做减速运动
- 如图所示,细绳的一端固定于O点,另一端系一个小球,在O点的正下方钉一个钉子A,小球从一定高度自由摆下,当细绳与钉子相碰后继续向右做摆长更小的摆动。不计空气阻力,假设小球碰钉子前后无机械能损失,有关摆球在整个摆动过程中,下列说法正确的是( )
A.小球碰钉子之后,绳上拉力减小
B.碰后小球向心加速度大小不变
C.碰后小球仍能摆到碰前释放摆球时高度
D.碰后小球最大摆角小于碰前释放摆球的摆角
- 如图所示,一物块置于足够长的水平传送带上,弹簧左端固定在竖直墙壁上,弹簧右端与物块接触但不栓接,墙壁与物块间系不可伸长的轻绳使水平方向的弹簧处于压缩状态,压缩量为0.2m(弹性限度内)。已知物块质量为0.5kg。物块与传送带间的动摩擦因数μ=0.5、重力加速度g=10m/s2。若传送带不动,剪断轻绳,当弹簧刚好恢复原长时物块的速度为零;若传送带以v=3m/s的速度顺时针匀速转动,则剪断轻绳后( )
A.在弹簧恢复原长的过程中,物块向右先做加速运动,后做减速运动
B.弹簧恢复原长时,物块速度大小为2m/s
C.物块在传送带上运动的过程中,摩擦力对物块做功为2.5J
D.弹簧恢复原长后,物块与传送带之间由于摩擦而产生的热量为2.75J
- 如图所示,表面粗糙的半圆形轨道MN竖直放置,MN两点等高,一个小滑块m从M点正上方高h处自由下落,恰好进入半圆轨道,从N点竖直上升的高度为,空气阻力不计。当小球再次进入轨道后( )
A.滑块回到M点后竖直上升一段距离
B.滑块恰好能达到M点后回落
C.滑块未能到达M点即开始回落
D.滑块最后一定静止在半圆轨道的最低点
- 如图所示,用完全相同的轻质弹簧P、Q拴接小球A,固定在竖直平面内处于静止状态,此时两弹簧的总长度恰好等于两弹簧的原长之和。已知弹簧的劲度系数为k,小球的质量为m
,重力加速度为g,忽略空气阻力。下列说法正确的是( )
A.弹簧P的伸长量为
B.剪断弹簧Q的瞬间,小球A的加速度大小为g
C.剪断弹簧Q后,小球A的机械能守恒
D.剪断弹簧Q后,小球A做简谐运动的振幅为
- 14.如图(a),轨道ABC固定于竖直平面内,其中AB段水平,BC段足够长且与水平方向夹角α=30°,两轨道间平滑连接,一质量m=1kg的小物块静置于B端。现对小物块施加一平行于斜面的拉力F=12N,当物块沿BC向上运动2m时撤去F。取AB所在水平面为零势能面,物块沿BC向上运动2m的过程中,其机械能E随位移大小x的变化情况如图(b)所示,g取10m/s2,物块与轨道间的动摩擦因数处处相等,且最大静摩擦力与同等压力下的滑动摩擦力大小相等。求:
(1)撤去拉力瞬间,物块的速度大小v;
(2)物块与轨道之间的动摩擦因数μ;
(3)若从小物块开始运动的时刻计时,请在图(c)画出0~3s的过程中,小物块的机械能E随时间t的变化关系图线(仅要求正确画出图线)。
- 如图所示,光滑钉子M、N相距2L,处于同一高度。带有光滑小孔的小球A穿过轻绳,轻绳的一端固定在钉子M上,另一端绕过钉子N与小球B相连,B球质量为m。用手将A球托住静止在M、N连线的中点P处,B球也处于静止状态。放手后,A球下落的最大距离为L。已知重力加速度为g。
(1)求A球的质量mA;
(2)求A球下落到最低点时绳中张力T;
(3)用质量为m的C球替换A球,C球从P点由静止释放后,求C球下落距离为L时的速度大小vC。
相关试卷
这是一份新高考物理一轮复习刷题练习第34讲 单体机械能守恒问题(含解析),共21页。
这是一份第34讲 单体机械能守恒问题(原卷版),共11页。
这是一份第34讲 单体机械能守恒问题(解析版),共20页。