|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题3.9 反比例函数专题(提高篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用)
    立即下载
    加入资料篮
    专题3.9 反比例函数专题(提高篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用)01
    专题3.9 反比例函数专题(提高篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用)02
    专题3.9 反比例函数专题(提高篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用)03
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题3.9 反比例函数专题(提高篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用)

    展开
    这是一份专题3.9 反比例函数专题(提高篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用),共33页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题3.9 反比例函数专题(提高篇)
    一、单选题
    1.(2022·海南·统考中考真题)若反比例函数的图象经过点,则它的图象也一定经过的点是(    )
    A. B. C. D.
    2.(2022·江苏泰州·统考中考真题)已知点在下列某一函数图像上,且那么这个函数是(   )
    A. B. C. D.
    3.(2022·西藏·统考中考真题)在同一平面直角坐标系中,函数y=ax+b与(其中a,b是常数,ab≠0)的大致图象是(  )
    A. B. C. D.
    4.(2022·山东日照·统考中考真题)如图,矩形OABC与反比例函数(k1是非零常数,x>0)的图象交于点M,N,与反比例函数(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1-k2=(    )

    A.3 B.-3 C. D.
    5.(2022·湖北荆门·统考中考真题)如图,点A,C为函数y=(x<0)图象上的两点,过A,C分别作AB⊥x轴,CD⊥x轴,垂足分别为B,D,连接OA,AC,OC,线段OC交AB于点E,且点E恰好为OC的中点.当△AEC的面积为时,k的值为(   )

    A.﹣1 B.﹣2 C.﹣3 D.﹣4
    6.(2022·湖南郴州·统考中考真题)如图,在函数的图像上任取一点A,过点A作y轴的垂线交函数的图像于点B,连接OA,OB,则的面积是(    )

    A.3 B.5 C.6 D.10
    7.(2022·湖北襄阳·统考中考真题)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c和反比例函数y=在同一平面直角坐标系中的图象可能是(    )

    A.B. C. D.
    8.(2022·湖南娄底·统考中考真题)在平面直角坐标系中,为坐标原点,已知点、(且),过点、的直线与两坐标轴相交于、两点,连接、,则下列结论中成立的是(    )
    ①点、在反比例函数的图象上;②成等腰直角三角形;③;④的值随的增大而增大.
    A.②③④ B.①③④ C.①②④ D.①②③
    9.(2022·内蒙古通辽·统考中考真题)如图,点是内一点,与轴平行,与轴平行,,,,若反比例函数的图像经过,两点,则的值是(   )

    A. B. C. D.
    10.(2022·湖北十堰·统考中考真题)如图,正方形的顶点分别在反比例函数和的图象上.若轴,点的横坐标为3,则(    )

    A.36 B.18 C.12 D.9
    二、填空题
    11.(2022·内蒙古呼和浩特·统考中考真题)点、在反比例函数的图象上,若,则的取值范围是______.
    12.(2022·江苏南通·统考中考真题)平面直角坐标系中,已知点是函数图象上的三点.若,则k的值为___________.
    13.(2022·广西梧州·统考中考真题)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点.当时,x的取值范围是_________.

    14.(2022·湖北随州·统考中考真题)如图,在平面直角坐标系中,直线与x轴,y轴分别交于点A,B,与反比例函数的图象在第一象限交于点C,若,则k的值为______.

    15.(2022·山东烟台·统考中考真题)如图,A,B是双曲线y=(x>0)上的两点,连接OA,OB.过点A作AC⊥x轴于点C,交OB于点D.若D为AC的中点,△AOD的面积为3,点B的坐标为(m,2),则m的值为 _____.

    16.(2022·湖北黄石·统考中考真题)如图,反比例函数的图象经过矩形对角线的交点E和点A,点B、C在x轴上,的面积为6,则______________.

    17.(2022·内蒙古鄂尔多斯·统考中考真题)如图,正方形OABC的顶点A、C分别在x轴和y轴上,E、F分别是边AB、OA上的点,且∠ECF=45°,将△ECF沿着CF翻折,点E落在x轴上的点D处.已知反比例函数y1=和y2=分别经过点B、点E,若S△COD=5,则k1﹣k2=_____.

    18.(2022·贵州黔东南·统考中考真题)如图,在平面直角坐标系中,等腰直角三角形的斜边轴于点,直角顶点在轴上,双曲线经过边的中点,若,则______.

    19.(2022·四川宜宾·统考中考真题)如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为______.

    20.(2022·广西玉林·统考中考真题)如图,点A在双曲线上,点B在直线上,A与B关于x轴对称,直线l与y轴交于点C,当四边形是菱形时,有以下结论:
    ①     ②当时,
    ③     ④
    则所有正确结论的序号是_____________.

    三、解答题
    21.(2022·浙江宁波·统考中考真题)如图,正比例函数的图像与反比例函数的图像都经过点.
    (1) 求点A的坐标和反比例函数表达式.
    (2) 若点在该反比例函数图像上,且它到y轴距离小于3,请根据图像直接写出n的取值范围.





    22.(2022·青海西宁·统考中考真题)如图,正比例函数与反比例函数的图象交于点,点B在反比例函数图象上,连接AB,过点B作轴于点.
    (1) 求反比例函数解析式;
    (2) 点D在第一象限,且以A,B,C,D为顶点的四边形是平行四边形,请直接写出点D的坐标.



    23.(2022·贵州安顺·统考中考真题)如图,在平面直角坐标系中,菱形的顶点在轴上,,两点的坐标分别为,,直线:与反比例函数的图象交于,两点.
    (1) 求该反比例函数的解析式及的值;
    (2) 判断点是否在该反比例函数的图象上,并说明理由.




    24.(2022·宁夏·中考真题)如图,一次函数的图象与轴、轴分别相交于、两点,与反比例函数的图象相交于点,,,::.
    (1) 求反比例函数的表达式;
    (2) 点是线段上任意一点,过点作轴平行线,交反比例函数的图象于点,连接当面积最大时,求点的坐标.

















    25.(2022·山东聊城·统考中考真题)如图,直线与反比例函数在第一象限内的图象交于点,与y轴交于点B,过双曲线上的一点C作x轴的垂线,垂足为点D,交直线于点E,且.
    (1) 求k,p的值;
    (2) 若OE将四边形BOCE分成两个面积相等的三角形,求点C的坐标.










    26.(2022·山东枣庄·统考中考真题)为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:
    时间x(天)
    3
    5
    6
    9
    ……
    硫化物的浓度y(mg/L)
    4.5
    2.7
    2.25
    1.5
    ……

    (1) 在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;
    (2) 在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;
    (3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?




























    参考答案
    1.C
    【分析】先利用反比例函数的图象经过点,求出k的值,再分别计算选项中各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.
    解:∵反比例函数的图象经过点,
    ∴k=2×(﹣3)=﹣6,
    ∵(﹣2)×(﹣3)=6≠﹣6,
    (﹣3)×(﹣2)=6≠﹣6,
    1×(﹣6)=﹣6,
    ,6×1=6≠﹣6,
    则它一定还经过(1,﹣6),
    故选:C.
    【点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.熟练掌握反比例函数的性质是解题的关键.
    2.D
    【分析】先假设选取各函数,代入自变量求出y1、y2、y3的值,比较大小即可得出答案.
    解:A.把点代入y=3x,解得y1=-9,y2=-3,y3=3,所以y1 B.把点代入y=3x2,解得y1=27,y2=3,y3=3,所以y1>y2=y3,这与已知条件不符,故选项错误,不符合题意;
    C. 把点代入y=,解得y1=-1,y2=-3,y3=3,所以y2 D. 把点代入y=-,解得y1=1,y2=3,y3=-3,所以,这与已知条件相符,故选项正确,符合题意;
    故选:D.
    【点拨】此题考查了一次函数、反比例函数以及二次函数,解题的关键是掌握函数值的大小变化和函数的性质.
    3.A
    【分析】根据a,b的取值分类讨论即可.
    解:若a<0,b<0,
    则y=ax+b经过二、三、四象限,反比例函数(ab≠0)位于一、三象限,故A选项符合题意;
    若a<0,b>0,
    则y=ax+b经过一、二、四象限,反比例函数(ab≠0)位于二、四象限,故B选项不符合题意;
    若a>0,b>0,
    则y=ax+b经过一、二、三象限,反比例函数(ab≠0)位于一、三象限,故C选项不符合题意;
    若a>0,b<0,
    则y=ax+b经过一、三、四象限,反比例函数数(ab≠0)位于二、四象限,故D选项不符合题意.
    故选:A.
    【点拨】此题考查的是反比例函数和一次函数的图像及性质,掌握系数a,b与反比例函数和一次函数的图像的关系是解决此题的关键.
    4.B
    【分析】根据矩形的性质以及反比例函数系数k的几何意义即可得出结论.
    解:∵点M、N均是反比例函数(k1是非零常数,x>0)的图象上,
    ∴,
    ∵矩形OABC的顶点B在反比例函数(k2是非零常数,x>0)的图象上,
    ∴S矩形OABC=k2,
    ∴S四边形OMBN=S矩形OABC-S△OAM-S△OCN=3,
    ∴k2-k1=3,
    ∴k1-k2=-3,
    故选:B.
    【点拨】本题考查了矩形的性质,反比例函数系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    5.B
    【分析】根据三角形的中线的性质求出△AEO的面积,根据相似三角形的性质求出S△OCD=1,根据反比例函数系数k的几何意义解答即可.
    解:∵点E为OC的中点,
    ∴,
    ∵点A,C为函数y=(x<0)图象上的两点,
    ∴S△ABO=S△CDO,
    ∴S四边形CDBE=S△AEO=,
    ∵EB∥CD,
    ∴△OEB∽△OCD,
    ∴,
    ∴S△OCD=1,
    则xy=﹣1,
    ∴k=xy=﹣2.
    故选:B.
    【点拨】本题考查的是反比例函数系数k的几何意义、相似三角形的性质,掌握反比例函数系数k的几何意义、相似三角形的面积比等于相似比的平方是解题的关键.
    6.B
    【分析】作AD⊥x轴,BC⊥x轴,由即可求解;
    解:如图,作AD⊥x轴,BC⊥x轴,

    ∵,



    故选:B.
    【点拨】本题主要考查反比例函数的应用,掌握反比例函数相关知识,结合图像进行求解是解题的关键.
    7.D
    【分析】根据二次函数图象开口向下得到a<0,再根据对称轴确定出b,根据与y轴的交点确定出c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.
    解:∵二次函数图象开口方向向下,
    ∴a<0,
    ∵对称轴为直线>0,
    ∴b>0,
    ∵与y轴的负半轴相交,
    ∴c<0,
    ∴y=bx+c的图象经过第一、三、四象限,
    反比例函数y=图象在第二四象限,
    只有D选项图象符合.
    故选:D.
    【点拨】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.
    8.D
    【分析】由反比例函数的性质可判断①,再求解PQ的解析式,得到A,B的坐标可判断②,由P,Q的位置可判断③,画出符合题意的图形,利用数形结合的思想可判断④,从而可得答案.
    解: 点、的横纵坐标的积为
    点、在反比例函数的图象上;故①符合题意;
    设过点、的直线为:
    解得:
    直线PQ为:
    当时, 当时,
    所以:

    所以是等腰直角三角形,故②符合题意;
    点、(且),
    点、在第一象限,且P,Q不重合,
    故③符合题意;
    ,而PQ在直线上,
    如图,

    显然是随的增大先减小,再逐渐增大,故④不符合题意;
    故选D
    【点拨】本题考查的是利用待定系数法求解一次函数与反比例函数的解析式,一次函数与反比例函数的性质,等腰直角三角形的判定,熟练的利用数形结合解题是关键.
    9.C
    【分析】过点C作CE⊥y轴于点E,延长BD交CE于点F,可证明△COE≌△ABE(AAS),则OE=BD=;由S△BDC=•BD•CF=可得CF=9,由∠BDC=120°,可知∠CDF=60°,所以DF=3,所以点D的纵坐标为4;设C(m,),D(m+9,4),则k=m=4(m+9),求出m的值即可求出k的值.
    解:过点C作CE⊥y轴于点E,延长BD交CE于点F,

    ∵四边形OABC为平行四边形,
    ∴ABOC,AB=OC,
    ∴∠COE=∠ABD,
    ∵BDy轴,
    ∴∠ADB=90°,
    ∴△COE≌△ABD(AAS),
    ∴OE=BD=,
    ∵S△BDC=•BD•CF=,
    ∴CF=9,
    ∵∠BDC=120°,
    ∴∠CDF=60°,
    ∴DF=3.
    ∴点D的纵坐标为4,
    设C(m,),D(m+9,4),
    ∵反比例函数y=(x<0)的图像经过C、D两点,
    ∴k=m=4(m+9),
    ∴m=-12,
    ∴k=-12.
    故选:C.
    【点拨】本题主要考查反比例函数与几何的综合问题,坐标与图形,全等三角形的判定与性质,设出关键点的坐标,并根据几何关系消去参数的值是本题解题关键.
    10.B
    【分析】设PA=PB=PC=PD=t(t≠0),先确定出D(3,),C(3-t,+t),由点C在反比例函数y=的图象上,推出t=3-,进而求出点B的坐标(3,6-),再点C在反比例函数y=的图象上,整理后,即可得出结论.
    解:连接AC,与BD相交于点P,

    设PA=PB=PC=PD=t(t≠0).
    ∴点D的坐标为(3,),
    ∴点C的坐标为(3-t,+t).
    ∵点C在反比例函数y=的图象上,
    ∴(3-t)(+t)=k2,化简得:t=3-,
    ∴点B的纵坐标为+2t=+2(3-)=6-,
    ∴点B的坐标为(3,6-),
    ∴3×(6-)=,整理,得:+=18.
    故选:B.
    【点拨】本题考查了反比例函数图象上点的坐标特征、正方形的性质,解题的关键是利用反比例函数图象上点的坐标特征,找出,之间的关系.
    11.
    【分析】反比例函数中k>0,则同一象限内y随x的增大而减小,由于,得到,从而得到的取值范围.
    解:∵在反比例函数y=中,k>0,
    ∴在同一象限内y随x的增大而减小,
    ∵,
    ∴这两个点在同一象限,
    ∴,
    解得:,
    故答案为:.
    【点拨】此题考查了反比例函数的性质,解题的关键是熟悉反比例函数的增减性,当k>0,在每一象限内y随x的增大而减小;当k<0,在每一象限内y随x的增大而增大.
    12.##0.75
    【分析】由点A、B、C的坐标可知,m=n,点B、C关于原点对称,求出直线BC的解析式,不妨设m>0,如图,过点A作x轴的垂线交BC于D,根据列式求出,进而可得k的值.
    解:∵点是函数图象上的三点,
    ∴,,
    ∴m=n,
    ∴,,
    ∴点B、C关于原点对称,
    ∴设直线BC的解析式为,
    代入得:,
    解得:,
    ∴直线BC的解析式为,
    不妨设m>0,如图,过点A作x轴的垂线交BC于D,
    把x=m代入得:,
    ∴D(m,),
    ∴AD=,
    ∴,
    ∴,
    ∴,
    而当m<0时,同样可得,
    故答案为:.

    【点拨】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.
    13.-2<x<0或x>4
    【分析】先求出n的值,再观察图象,写出一次函数的图象在反比例函数的图象下方时对应的自变量的取值范围即可.
    解:∵反比例函数的图象经过A(-2,2),
    ∴m=-2×2=-4,
    ∴,
    又反比例函数的图象经过B(n,-1),
    ∴n=4,
    ∴B(4,-1),
    观察图象可知:当时,图中一次函数的函数值小于反比例函数的函数值,则x的取值范围为:-2<x<0或x>4.
    故答案为:-2<x<0或x>4.
    【点拨】本题考查反比例函数与一次函数的交点问题,正确求出n的值是解题的关键.
    14.2
    【分析】过点C作CH⊥x轴,垂足为H,证明△OAB∽△HAC,再求出点C坐标即可解决问题.
    解:如图,过点C作CH⊥x轴,垂足为H,

    ∵直线与x轴,y轴分别交于点A,B,
    ∴将y=0代入,得,将x=0代入,得y=1,
    ∴A(,0),B(0,1),
    ∴OA=,OB=1,
    ∵∠AOB=∠AHC=90°,∠BAO=∠CAH,
    ∴△OAB∽△HAC,

    ∵OA=,OB=1,,

    ∴AH=,CH=2,
    ∴OH=1,
    ∵点C在第一象限,
    ∴C(1,2),
    ∵点C在上,
    ∴.
    故答案为:2.
    【点拨】本题考查反比例函数综合题、一次函数的应用、相似三角形的判定和性质等知识,解题的关键是熟练掌握待定系数法,本题的突破点是求出点C的坐标.
    15.6
    【分析】应用k的几何意义及中线的性质求解.
    解:D为AC的中点,的面积为3,
    的面积为6,
    所以,
    解得:m=6.
    故答案为:6.
    【点拨】本题考查了反比例函数中k的几何意义,关键是利用的面积转化为三角形AOC的面积.
    16.8
    【分析】如图作EF⊥BC,由矩形的性质可知,设E点坐标为(a,b),则A点坐标为(c,2b),根据点A,E在反比例函数上,根据反比例函数系数的几何意义可列出ab=k=2bc,根据三角形OEC的面积可列出等式,进而求出k的值.
    解:如图作EF⊥BC,则,

    设E点坐标为(a,b),则A点的纵坐标为2b,
    则可设A点坐标为坐标为(c,2b),
    ∵点A,E在反比例函数上,
    ∴ab=k=2bc,解得:a=2c,故BF=FC=2c-c=c,
    ∴OC=3c,
    故,解得:bc=4,
    ∴k=2bc=8,
    故答案为:8.
    【点拨】本题考查矩形的性质,反比例函数的图形,反比例函数系数k的几何意义,能够熟练掌握反比例函数系数k的几何意义是解决本题的关键.
    17.10
    【分析】作EH⊥y轴于点F,则四边形BCHE、AEHO都为矩形,利用折叠的性质得∠DCH=∠BCE,
    证明△BCE≌△OCD,则面积相等,根据反比例函数系数k的几何意义得k1﹣k2的值.
    解:作EH⊥y轴于点H,

    则四边形BCHE、AEHO都为矩形,
    ∵∠ECF=45°,△ECF翻折得到,
    ∴∠BCE+∠OCF=45°,
    ∵∠DOC+∠OCF=45°,
    ∴∠BCE=∠OCD,
    ∵BC=OC,∠B=∠COD,
    ∴△BCE≌△OCD(ASA),
    ∴S△BCE=S△COD=5,
    ∴S△CEH=5,
    S矩形BCHE=10,
    ∴根据反比例函数系数k的几何意义得:
    k1﹣k2=S矩形BCHE=10,
    故答案为:10.
    【点拨】本题考查了反比例函数系数k的几何意义,折叠的性质,正方形的性质和全等三角形的判定和性质,利用折叠和全等进行转化是关键.
    18.
    【分析】根据是等腰直角三角形,轴,得到是等腰直角三角形,再根据求出 A点,C点坐标,根据中点公式求出D点坐标,将D点坐标代入反比例函数解析式即可求得k.
    解:∵是等腰直角三角形,轴.
    ∴;.
    ∴是等腰直角三角形.
    ∴.
    故:,.

    将D点坐标代入反比例函数解析式.

    故答案为:.
    【点拨】本题考查平面几何与坐标系综合,反比例函数解析式;本体解题关键是得到是等腰直角三角形,用中点公式算出D点坐标.
    19.
    【分析】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,设OC=x,利用含30度角的直角三角形的性质以及勾股定理求得点B(x,x),点A(15-2x,2x-5),再利用反比例函数的性质列方程,解方程即可求解.
    解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图:

    ∵△OMN是边长为10的等边三角形,
    ∴OM=MN=ON=10,∠MON=∠MNO=∠M=60°,
    ∴∠OBC=∠MAB=∠NAD=30°,
    设OC=x,则OB=2x,BC=x,MB=10-2x,MA=2MB=20-4x,
    ∴NA=10-MA=4x-10,DN=NA=2x-5,AD=DN=(2x-5)= 2x-5,
    ∴OD=ON-DN=15-2x,
    ∴点B(x,x),点A(15-2x,2x-5),
    ∵反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B,
    ∴x•x=(15-2x)( 2x-5),
    解得x=5(舍去)或x=3,
    ∴点B(3,),
    ∴k= 9.
    故答案为:9.
    【点拨】本题是反比例函数的综合题,考查了等边三角形的性质,含30度角的直角三角形的性质以及勾股定理,解题的关键是学会利用参数构建方程解决问题.
    20.②③
    【分析】根据一次函数图象上的点的坐标特征、菱形的性质及勾股定理即可求出,即可判断①错误;根据反比例函图象上的点的特征即可求出,当时,即可求出k的值,即可判断②正确;将点代入直线,即可求出m的值,即可判断③正确;再根据底乘高即可计算,继而判断④错误.
    解:直线,
    当时,,


    四边形是菱形,

    A与B关于x轴对称,设AB交x轴于点D,


    在中,,
    ,故①错误;
    在双曲线上,


    当时,,故②正确;


    点B在直线上,


    ,故③正确;
    ,故④错误;
    综上,正确结论的序号是②③,
    故答案为:②③.
    【点拨】本题考查了一次函数图象上的点的坐标特征、反比例函数图象上的点的坐标特征、菱形的性质及勾股定理,熟练掌握知识点是解题的关键.
    21.(1) , (2) 或
    【分析】(1)把点A的坐标代入一次函数关系式可求出a的值,再代入反比例函数关系式确定k的值,进而得出答案;
    (2)确定m的取值范围,再根据反比例函数关系式得出n的取值范围即可.
    (1)解:把的坐标代入,

    解得,
    ∴.
    又∵点是反比例函数的图像上,
    ∴,
    ∴反比例函数的关系式为;
    (2)解:∵点在该反比例函数图像上,且它到y轴距离小于3,
    ∴或,
    当时,,
    当时,,
    由图像可知,
    若点在该反比例函数图像上,且它到 y轴距离小于3,n的取值范围为或.
    【点拨】本题考查反比例函数图像上点的坐标特征,反比例函数与一次函数的图像交点坐标,把点的坐标代入相应的函数关系式求出待定系数是求函数关系式的常用方法.
    22.(1) (2) 或
    【分析】(1)先将代入求出,再将代入反比例函数即可求出k;
    (2)以A,B,C,D为顶点的四边形是平行四边形,需分类讨论:当AB为一条对角线时,当AC为一条对角线时,当AD为一条对角线时,根据中点坐标公式分别求出D点坐标,另还需考虑D在第一象限.
    (1)解:∵正比例函数与反比例函数的图象交于点A
    把代入得


    把代入反比例函数得

    ∴反比例函数的解析式是;
    (2)由(1)知A(1,4),C(2,0),反比例函数解析式为,
    ∵,B在反比例函数图象上,
    ∴B(2,2),
    令D(m,n),
    以A,B,C,D为顶点的四边形是平行四边形,
    当AB为一条对角线时,则,
    解得m=1,n=6,
    ∴D(1,6)
    当AC为一条对角线时,则,
    解得m=1,n=2,
    ∴D(1,2)
    当AD为一条对角线时,则,
    解得m=3,n=-2,
    ∴D(3,-2)(舍去)
    综上所述,点D的坐标是或.
    【点拨】本题考查反比例函数与一次函数相交问题以及平行四边形存在性问题,解题关键是由题中的条件分别求出A,B,C的坐标,再分类讨论求出平行四边形的第四个顶点坐标.
    23.(1) , (2) 点在该反比例函数的图象上,理由见解答
    【分析】(1)因为点在双曲线上,所以代入点坐标即可求出双曲线的函数关系式,又因为点在双曲线上,代入即可求出的值;
    (2)先求出点的坐标,判断即可得出结论.
    (1)解:将点代入中,得,
    反比例函数的解析式为,
    将点代入中,
    得;
    (2)解:因为四边形是菱形,,,
    ,,

    由(1)知双曲线的解析式为;

    点在双曲线上.
    【点拨】此题是反比例函数综合题,主要考查了待定系数法,菱形的性质,解题的关键是用表示出点的坐标.
    24.(1) (2) 点D的坐标为
    【分析】(1)过点作轴于点,先证∽,根据对应边成比例得,结合已知条件推出,,, ,可得,代入反比例函数解析式求出m值即可;
    (2)先利用待定系数法求出直线AB的解析式为,设点的横坐标为,则,,用含t的代数式表示出ED,进而利用三角形面积公式得到关于t的一元二次函数,化成顶点式,即可求出最值.
    (1)解:如图,过点作轴于点,

    ∴,
    又∵,
    ∽,
    ∴,
    ∵,,

    ,,


    点在反比例函数的图象上,

    反比例函数的表达式为:.
    (2)解:由题意可知,
    设直线的解析式为,
    将,代入,
    得,
    解得,
    直线的解析式为:.
    设点的横坐标为,则,,

    的面积为:




    时,面积取最大值,最大值为,
    将代入,得
    ∴点D的坐标为.
    【点拨】本题属于一次函数、反比例函数以及二次函数的综合题,考查待定系数法求一次函数、反比例函数解析式,相似三角形的判定与性质,锐角三角函数解直角三角形,以及二次函数的最值等,解第一问的关键是求出点A的坐标,解第二问的关键是求出面积的函数表达式.
    25.(1) , (2) 点的坐标为(4,2)
    【分析】(1)先求出点B的坐标,得到,结合点A的横坐标为2,求出的面积,再利用求出,设,代入面积中求出k,得到反比例函数解析式,再将点A横坐标代入出点A纵坐标,最后将点A坐标代入直线即可求解;
    (2)根据(1)中点C的坐标得到点E的坐标,结合OE将四边形BOCE分成两个面积相等的三角形,列出关于m的方程,解方程即可求解.
    (1)解:∵直线与y轴交点为B,
    ∴,
    即.
    ∵点A的横坐标为2,
    ∴.
    ∵,
    ∴,
    设,
    ∴,
    解得.
    ∵点在双曲线上,
    ∴,
    把点代入,得,
    ∴,;
    (2)解:由(1)得,
    ∴.
    ∵OE将四边形BOCE分成两个面积相等的三角形,
    ∴,
    ∵,,
    ∴,
    解得或(不符合题意,舍去),
    ∴点的坐标为(4,2).
    【点拨】本题主要考查反比例函数的图形和性质,一次函数的图象和性质,熟练掌握一次函数和反比例函数的图象和性质及待定系数法求函数解析式是解题的关键.
    26.(1) 线段AC的函数表达式为:y=﹣2.5x+12(0≤x<3);(2) y=(x≥3);(3) 该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L,理由见分析.
    【分析】(1)设线段AC的函数表达式为:y=kx+b,把A、C两点坐标代入求出k、b的值即可;
    (2)设函数的表达式为:y=,把C点坐标代入,求出k的值即可;
    (3)根据(2)所得表达式,求出x=15时,y的值与硫化物浓度允许的最高值比较即可.
    (1)解:由前三天的函数图像是线段,设函数表达式为:y=kx+b
    把(0,12)(3,4.5)代入函数关系式,得 ,
    解得:k=﹣2.5,b=12
    ∴当0≤x<3时,硫化物的浓度y与时间x的函数表达式为:y=﹣2.5x+12;
    (2)解:当x≥3时,设y=,
    把(3,4.5)代入函数表达式,得4.5=,
    解得k=13.5,
    ∴当x≥3时,硫化物的浓度y与时间x的函数表达式为:y= ;
    (3)解:能,理由如下:
    当x=15时,y==0.9,
    因为0.9<1,
    所以该企业所排污水中硫化物的浓度,能在15天以内不超过最高允许的1.0mg/L.
    【点拨】本题考查一次函数和反比例函数,熟练掌握根据坐标确定解析式的一次项系数和常数项是解题关键.

    相关试卷

    专题6.2 统计与概率专题(提高篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用): 这是一份专题6.2 统计与概率专题(提高篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题3.10 反比例函数专题(培优篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用): 这是一份专题3.10 反比例函数专题(培优篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用),共51页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题3.8 反比例函数专题(基础篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用): 这是一份专题3.8 反比例函数专题(基础篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题3.9 反比例函数专题(提高篇)-【挑战满分】2023年中考数学总复习精选精练(全国通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map