|课件下载
终身会员
搜索
    上传资料 赚现金
    新高考数学一轮复习课件 第2章 §2.9 函数的零点与方程的解
    立即下载
    加入资料篮
    新高考数学一轮复习课件  第2章 §2.9 函数的零点与方程的解01
    新高考数学一轮复习课件  第2章 §2.9 函数的零点与方程的解02
    新高考数学一轮复习课件  第2章 §2.9 函数的零点与方程的解03
    新高考数学一轮复习课件  第2章 §2.9 函数的零点与方程的解04
    新高考数学一轮复习课件  第2章 §2.9 函数的零点与方程的解05
    新高考数学一轮复习课件  第2章 §2.9 函数的零点与方程的解06
    新高考数学一轮复习课件  第2章 §2.9 函数的零点与方程的解07
    新高考数学一轮复习课件  第2章 §2.9 函数的零点与方程的解08
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课件 第2章 §2.9 函数的零点与方程的解

    展开
    这是一份新高考数学一轮复习课件 第2章 §2.9 函数的零点与方程的解,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。

    §2.9 函数的零点与方程的解
    1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.
    LUOSHIZHUGANZHISHI
    1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使 的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有 ⇔函数y=f(x)的图象与 有公共点.
    (3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有__________,那么,函数y=f(x)在区间 内至少有一个零点,即存在c∈(a,b),使得 ,这个c也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且 的函数y=f(x),通过不断地把它的零点所在区间 ,使所得区间的两个端点逐步逼近 ,进而得到零点近似值的方法叫做二分法.
    判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(  )(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(  )(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(  )(4)二次函数y=ax2+bx+c(a≠0),若b2-4ac<0,则f(x)无零点.(  )
    1.(多选)已知函数f(x)的图象是连续不断的,且有如下对应值表:
    在下列区间中,函数f(x)必有零点的区间为A.(1,2)   B.(2,3)   C.(5,6)   D.(5,7)
    由所给的函数值表知,f(1)f(2)>0,f(2)f(3)<0,f(5)f(6)<0,f(5)f(7)<0,∴f(x)在区间(2,3),(5,6),(5,7)内各至少有一个零点.
    2.已知函数f(x)=        则f(x)的零点为________.
    解得x=-2或x=e.
    3.方程2x+x=k在(1,2)内有解,则实数k的取值范围是______.
    设f(x)=2x+x,∴f(x)在(1,2)上单调递增,又f(1)=3,f(2)=6,∴3TANJIUHEXINTIXING
    例1 (1)(多选)(2022·菏泽质检)函数f(x)=ex-x-2在下列哪个区间内必有零点A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)
    函数零点所在区间的判定
    f(0)=-1<0,f(1)=e-3<0,f(2)=e2-4>0,因为f(-2)·f(-1)<0,f(1)·f(2)<0,所以f(x)在(-2,-1)和(1,2)内存在零点.
    (2)若a函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0.所以f(a)f(b)<0,f(b)f(c)<0,即f(x)在区间(a,b)和区间(b,c)内各有一个零点.
    f(x)的定义域为{x|x>0},
    令f′(x)>0⇒x>3,f′(x)<0⇒0确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(2)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.
    跟踪训练1 (1)(2022·太原模拟)利用二分法求方程lg3x=3-x的近似解,可以取的一个区间是A.(0,1) B.(1,2)C.(2,3) D.(3,4)
    设f(x)=lg3x-3+x,当x→0时,f(x)→-∞,f(1)=-2,又∵f(2)=lg32-1<0,f(3)=lg33-3+3=1>0,故f(2)·f(3)<0,故方程lg3x=3-x在区间(2,3)上有解,即利用二分法求方程lg3x=3-x的近似解,可以取的一个区间是(2,3).
    (2)已知2依题意x0为方程lgax=-x+b的解,即为函数f(x)=lgax+x-b的零点,∵20,∴x0∈(2,3),即n=2.
    例2 (1)(2022·绍兴模拟)若函数y=f(x)(x∈R)满足f(x+1)=-f(x),且x∈[-1,1]时,f(x)=1-x2,已知函数g(x)=      则函数h(x)=f(x)-g(x)在区间[-6,6]内的零点个数为A.14   B.13   C.12   D.11
    因为f(x+1)=-f(x),所以函数y=f(x)(x∈R)是周期为2函数,因为x∈[-1,1]时,f(x)=1-x2,所以作出它的图象,则y=f(x)的图象如图所示.(注意拓展它的区间)
    容易得出交点为12个.
    令36-x2≥0,解得-6≤x≤6,∴f(x)的定义域为[-6,6].令f(x)=0得36-x2=0或cs x=0,由36-x2=0得x=±6,
    故f(x)共有6个零点.
    函数f(x)=2x|lg2x|-1的零点个数为A.0   B.1    C.2   D.4
    求解函数零点个数的基本方法(1)直接法:令f(x)=0,方程有多少个解,则f(x)有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.
    跟踪训练2 (1)函数f(x)是R上最小正周期为2的周期函数,当0≤x<2时f(x)=x2-x,则函数y=f(x)的图象在区间[-3,3]上与x轴的交点个数为A.6    B.7    C.8    D.9
    令f(x)=x2-x=0,所以x=0或x=1,所以f(0)=0,f(1)=0,因为函数的最小正周期为2,所以f(2)=0,f(3)=0,f(-2)=0,f(-1)=0,f(-3)=0.所以函数y=f(x)的图象在区间[-3,3]上与x轴的交点个数为7.
    (2)(2022·泉州模拟)设定义域为R的函数f(x)=        则关于x的函数y=2f 2(x)-3f(x)+1的零点的个数为A.3     B.7    C.5     D.6
    根据题意,令2f 2(x)-3f(x)+1=0,
    故关于x的函数y=2f2(x)-3f(x)+1的零点的个数为 7.
    命题点1 根据函数零点个数求参数
    画出f(x)的函数图象,设y=a(x+3),该直线恒过点(-3,0),结合函数图象,若y=a(x+3)与y=-x2-2x相切,联立得x2+(a+2)x+3a=0,Δ=(a+2)2-12a=0,
    命题点2 根据函数零点范围求参数
    由于存在x0∈(-∞,-1),使得f(x0)=0,则实数a的取值范围即为函数g(x)在(-∞,-1)上的值域.
    作出二次函数y=x2+2x的图象,如图.
    2.若函数f(x)=(m-2)x2+mx+2m+1的两个零点分别在区间(-1,0)和区间(1,2)内,则m的取值范围是________.
    已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
    函数g(x)=f(x)-b有三个零点等价于函数y=f(x)的图象与直线y=b有三个不同的交点,当x≤0时,f(x)=(x+1)ex,则f′(x)=ex+(x+1)ex=(x+2)ex,
    x→-∞时,f(x)→0,
    从而可得f(x)的图象如图所示,
    通过图象可知,若函数y=f(x)的图象与直线y=b有三个不同的交点,则b∈(0,1].
    所以函数f(x)在(1,3]上单调递增,
    KESHIJINGLIAN
    1.函数f(x)=x3-   的零点所在的区间为A.(0,1) B.(1,2)C.(2,3) D.(3,4)
    f(0)=-4,f(1)=-1,f(2)=7,因为f(x)在R上连续且在R上单调递增,所以f(1)·f(2)<0,f(x)在(1,2)内有唯一零点.
    2.设函数f(x)=4x3+x-8,用二分法求方程4x3+x-8=0近似解的过程中,计算得到f(1)<0,f(3)>0,则方程的近似解落在区间
    取x1=2,因为f(2)=4×8+2-8=26>0,所以方程近似解x0∈(1,2),
    因为函数f(x)在(1,+∞)上单调递增,且f(2)=0,即f(x)在(1,+∞)上有一个零点,
    当且仅当f(x)在(-∞,1]上有一个零点,x≤1时,f(x)=0⇔m=-3x,即函数y=-3x在(-∞,1]上的图象与直线y=m有一个公共点,而y=-3x在(-∞,1]上单调递减,且有-3≤-3x<0,则当-3≤m<0时,直线y=m和函数y=-3x(x≤1)的图象有一个公共点.
    5.(2022·重庆质检)已知函数f(x)=  -lg2x,设0cC.x0b
    得f(a)<0,f(b)<0,f(c)<0或f(a)>0,f(b)>0,f(c)<0.∴x0c不成立.
    6.(2022·北京西城区模拟)若偶函数f(x)(x∈R)满足f(x+2)=f(x)且x∈[0,1]时,f(x)=x,则方程f(x)=lg3|x|的根的个数是A.2     B.3     C.4     D.多于4
    f(x)=lg3|x|的解的个数,等价于y=f(x)的图象与函数y=lg3|x|的图象的交点个数,因为函数f(x)满足f(x+2)=f(x),所以周期T=2,当x∈[0,1]时,f(x)=x,且f(x)为偶函数,在同一平面直角坐标系中画出函数y=f(x)的图象与函数y=lg3|x|的图象,如图所示.显然函数y=f(x)的图象与函数y=lg3|x|的图象有4个交点.
    7.(多选)函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k的交点个数可能是A.1    B.2    C.4     D.6
    由题意知,f(x)=sin x+2|sin x|,x∈[0,2π],
    在坐标系中画出函数f(x)的图象如图所示.由其图象知,直线y=k与y=f(x)的图象交点个数可能为0,1,2,3,4.
    8.(多选)(2022·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,并是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(),简单的讲就是对于满足一定条件的连续函数f(x),存在一个点x0,使得f(x0)=x0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是A.f(x)=2x+x B.g(x)=x2-x-3C.f(x)= +1 D.f(x)=|lg2x|-1
    选项D,若f(x0)=x0,则|lg2x0|-1=x0,即|lg2x0|=x0+1,作出y=|lg2x|与y=x+1的函数图象,如图,由图可知,方程|lg2x|=x+1有实数根x0,即|lg2x0|=x0+1,故D中函数是“不动点”函数.
    9.若函数f(x)=x3+ax2+bx+c是奇函数,且有三个不同的零点,写出一个符合条件的函数:f(x)=__________________.
    f(x)=x3+ax2+bx+c为奇函数,故a=c=0,f(x)=x3+bx=x(x2+b)有三个不同零点,∴b<0,∴f(x)=x3-x满足题意.
    x3-x(答案不唯一)
    10.函数f(x)=         若函数y=f(x)-m有三个不同的零点,则实数m的取值范围是______.
    画出函数y=f(x)与y=m的图象,如图所示,注意当x=-1时,f(-1)=-1+2+1=2,f(0)=1,∵函数y=f(x)-m有三个不同的零点,∴函数y=f(x)与y=m的图象有3个交点,由图象可得m的取值范围为111.(2022·枣庄模拟)已知函数f(x)=|ln x|,若函数g(x)=f(x)-ax在区间(0,e2]上有三个零点,则实数a的取值范围是_________.
    ∵函数g(x)=f(x)-ax在区间(0,e2]上有三个零点,∴y=f(x)的图象与直线y=ax在区间(0,e2]上有三个交点,由函数y=f(x)与y=ax的图象可知,
    12.(2022·济南质检)若x1是方程xex=1的解,x2是方程xln x=1的解,则x1x2=___.
    13.已知函数f(x)=2x+x-1,g(x)=lg2x+x-1,h(x)=x3+x-1的零点分别为a,b,c,则a,b,c的大小为A.c>b>a B.b>c>aC.c>a>b D.a>c>b
    令f(x)=0,则2x+x-1=0,得x=0,即a=0,令g(x)=0,则lg2x+x-1=0,得x=1,即b=1,因为函数h(x)=x3+x-1在R上为增函数,且h(0)=-1<0,h(1)=1>0,所以h(x)在区间(0,1)上存在唯一零点c,且c∈(0,1),综上,b>c>a.
    14.(2022·厦门模拟)已知函数f(x)=      则函数y=f(f(x))的所有零点之和为_____.
    当x≤0时,x+1=0,x=-1,由f(x)=-1,可得x+1=-1或lg2x=-1,
    当x>0时,lg2x=0,x=1,由f(x)=1,可得x+1=1或lg2x=1,∴x=0或x=2;
    显然,x=0是方程的一个解,下面只考虑x≠0时有三个实数解即可.若x>0,原方程等价于1=kx(x+4),
    要使该方程有解,必须k>0,
    所以当x<0时必须有两解,当x<0时,原方程等价于-1=kx(x+4),
    16.已知M={α|f(α)=0},N={β|g(β)=0},若存在α∈M,β∈N,使得|α-β|
    相关课件

    新高考数学一轮复习讲练测课件第2章§2.11函数的零点与方程的解 (含解析): 这是一份新高考数学一轮复习讲练测课件第2章§2.11函数的零点与方程的解 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,fx=0,fafb0,fc=0,一分为二,∴至少需要操作4次,1+∞等内容,欢迎下载使用。

    高中数学高考第2章 §2 9 函数的零点与方程的解课件PPT: 这是一份高中数学高考第2章 §2 9 函数的零点与方程的解课件PPT,共60页。PPT课件主要包含了落实主干知识,fx=0,fafb0,fc=0,一分为二,-2e,探究核心题型,函数零点个数的判定,又x∈-66,作出fx的简图等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册第二章 一元二次函数、方程和不等式2.3 二次函数与一元二次方程、不等式备课课件ppt: 这是一份高中数学人教A版 (2019)必修 第一册第二章 一元二次函数、方程和不等式2.3 二次函数与一元二次方程、不等式备课课件ppt,共15页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习课件 第2章 §2.9 函数的零点与方程的解
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map