搜索
    上传资料 赚现金
    高中数学人教A版(2019)必修第一册5.4三角函数的图象与性质(含解析) 试卷
    立即下载
    加入资料篮
    高中数学人教A版(2019)必修第一册5.4三角函数的图象与性质(含解析) 试卷01
    高中数学人教A版(2019)必修第一册5.4三角函数的图象与性质(含解析) 试卷02
    高中数学人教A版(2019)必修第一册5.4三角函数的图象与性质(含解析) 试卷03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第一册5.4 三角函数的图象与性质课时作业

    展开
    这是一份人教A版 (2019)必修 第一册5.4 三角函数的图象与性质课时作业,共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    人教A版(2019)必修第一册 5.4 三角函数的图象与性质

     

    一、单选题

    1.函数是(       

    A.奇函数,且在区间上单调递增 B.奇函数,且在区间上单调递减

    C.偶函数,且在区间上单调递增 D.偶函数,且在区间上单调递减

    2.设函数,则下列结论正确的是

    A的一个周期为 B的图象关于直线对称

    C的一个零点是 D单调递增

    3.函数的单调增区间是(       

    A B

    C D

    4.函数的部分图大致为(       

    A B

    C D

    5.若的图像与的图象关于轴对称,则的解析式为(       

    A B

    C D

    6.函数在其定义域上是

    A.奇函数 B.偶函数 C.既非奇函数也非偶函数 D.不能确定

    7.已知函数),若的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,则的取值范围是(       

    A B

    C D

    8.设函数,在区间上至少有2个不同的零点,至多有3个不同的零点,则的取值范围是(       

    A B

    C D

    9.设Mm分别表示函数的最大值和最小值,则等于(       

    A B C D-2

    10.若函数的部分图象如图所示,则(       

    A B

    C D

    11.下列函数中,以为周期且在区间()单调递增的是

    Af(x)=│cos 2x Bf(x)=│sin 2x

    Cf(x)=cos│x Df(x)= sin│x

    12.若函数的最小正周期为,则(       

    A B

    C D

    二、填空题

    13.若,则下列各式错误的有______.(填序号)

                 

                 

    14.右图是函数)的一段图像,则该函数解析式为______.

    15.若函数的图象关于点对称,则实数_______

    16.已知函数,则该函数的图像与直线的交点坐标是______

    17.已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是________.

    三、解答题

    18.已知集合是满足下述性质的函数的全体:存在非零常数,对于任意的,都有成立.

    1)设函数,试证明:

    2)当时,试说明函数的一个性质,并加以证明;

    3)若函数,求实数的取值范围.

    19.已知函数y= Asinx+)(A>0>0||<)在一个周期上的图象如图所示.求这个函数的解析式.

    20.已知函数图象上相邻的最高点与最低点的横坐标相差______

    1的一条对称轴

    的一个对称中心,且在上单调递减;

    向左平移个单位得到的图象关于轴对称且

    从以上三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;

    2)在(1)的情况下,令,若存在使得成立,求实数的取值范围.

    21.如图是函数)的部分图象,MN是它与x轴的两个不同交点,D是这部分图象的最高点且横坐标为,点是线段DM的中点.

    (1)求函数的解析式及其在上的单调递增区间;

    (2)时,函数的最小值为,求实数a的值.


    参考答案:

    1D

     

     

    根据函数奇偶性的定义和余弦函数的性质,即可求解.

    【详解】

    由题意,函数的定义域,且

    所以函数为偶函数,

    又由余弦函数的性质,可得在区间为递减函数.

    故选:D.

    2B

     

     

    根据周期公式计算可知,选项A错误;根据的余弦值可知,选项B正确且选项C错误;根据区间的长度大于半个周期可知,选项D错误.

    【详解】

    因为,所以选项A错误;

    因为,所以选项B正确;

    因为,所以选项C错误;

    的最小正周期为,在内不可能是单调的,选项D错误.

    故选:B.

     

    本题考查了余弦函数的周期性,对称轴,零点和单调性,属于基础题.

    3C

     

     

    的单调增区间,即函数的单调减区间,然后解出不等式即可得答案.

    【详解】

    的单调增区间,即函数的单调减区间.

    ,求得

    故函数函数的单调减区间为

    故选:C

    4C

     

     

    利用函数的奇偶性的性质,可判断AB,再利用函数解析式可得排除D.

    【详解】

    因为函数,为偶函数,函数图象关于轴对称,故排除AB

    ,故排除D.

    故选:C.

    5B

     

     

    根据的图象特征依次判断即可得到结果.

    【详解】

    对于A,图象与重合,A错误;

    对于B图象关于轴对称,图象关于轴对称,B正确;

    对于C,当时,,可知其图象不可能与关于轴对称,C错误;

    对于D,将位于轴下方的图象翻折到轴上方,就可以得到的图象,可知其图象与的图象不关于轴对称,D错误.

    故选:B.

    6B

     

     

    根据三角函数的诱导公式化简函数,即可得出它的性质是什么.

    【详解】

    函数,此时函数为偶函数,故选B

     

    本题考查了三角函数的诱导公式与三角函数的图象与性质的问题,是基础题目.

    7C

     

     

    由已知得,且,解之讨论k,可得选项.

    【详解】

    因为的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,所以,所以,故排除AB

    ,且,解得

    时,不满足

    时,符合题意,

    时,符合题意,

    时,不满足,故C正确,D不正确,

    故选:C.

     

    关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于的不等式组,解之讨论可得选项.

    8D

     

     

    由题意,方程在区间上至少有2个不同的根,至多有3个不同的根,结合正弦函数的图象和性质,求得的范围.

    【详解】

    函数,在区间上至少有2个不同的零点,至多有3个不同的零点,即在区间上至少有2个不同的根,至多有3个不同的根,

    如图:

    ,则,得无解;

    ,则,求得

    时,则,求得

    时,区间长度超过了正弦函数的两个最小正周期长度,故方程在区间上至少有4个根,不满足题意;

    综上,可得

    故选:D.

    9D

     

     

    利用余弦函数的性质可求得cosx范围,进而确定函数的值域,求得Mm,则M+m的值可得.

    【详解】

    因为,所以

    所以

    所以M+m=-2.

    故选:D

    10D

     

    由图象中点的坐标,可确定斜率求出;由图象结合三角函数的周期性,求出,再由最小值点可求出.

    【详解】

    由题意可得,

    由图象可得,函数的周期为,则

    所以当时,,又,所以

    ,所以

    ,所以.

    故选:D.

    11A

     

     

    本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.

    【详解】

    因为图象如下图,知其不是周期函数,排除D;因为,周期为,排除C,作出图象,由图象知,其周期为,在区间单调递增,A正确;作出的图象,由图象知,其周期为,在区间单调递减,排除B,故选A

     

    利用二级结论:函数的周期是函数周期的一半;不是周期函数;

    12C

     

     

    先求得,求得函数上单调递增,结合,利用单调性作出比较,即可求解.

    【详解】

    由题意,函数的最小正周期为

    可得,解得,即

    ,即

    时,,即函数上单调递增,

    又由

    又由,所以.

    故选:C.

     

    本题主要考查了正切函数的图象与性质的应用,其中解答中熟记正切函数的图象与性质,合理应用函数的单调性进行比较是解答的关键,着重考查推理与运算能力.

    13

     

     

    利用三角函数的定义和值域,不等式的基本性质,得出结论.

    【详解】

    ,则

    所以,正确,错误,正确,

    正确,

    故答案为:

    14

     

     

    根据图形求出周期,即可得出,再由可求出.

    【详解】

    由图可得,所以,则

    ,即

    ,则,即.

    故答案为:.

    153

     

     

    解方程,即得解.

    【详解】

    由题得

    所以

    所以.

    时,函数的图象关于点对称.

    故答案为:3

    16

     

     

    联立方程组,再结合即可得到答案.

    【详解】

    函数的图象与直线的交点坐标即为方程组

    的解.

    ,解得

    函数的图象与直线的交点坐标是.

    故答案为:   .

    17

     

    设双曲线的左焦点为,连接,由于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可.

    【详解】

    如图,

    设双曲线的左焦点为,连接,由于.所以四边形为矩形,

    .

    由双曲线的定义可得

    .

    故答案为:

     

    本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题.

    18.(1)证明见解析;(2)答案见解析;(3.

     

     

    1)取,推得,即可得所以

    2)当时,可得,推得,即可求解;

    3)由,得到成立,根据两种情况,结合函数的新定义,即可求解.

    【详解】

    1)由题意,函数

    ,对于任意的

    所以.

    2)当时,可得,所以

    ,所以是一个周期函数,周期为2.

    3)因为,所以存在非零常数,对于任意的

    都有成立,即

    ,取,则对于恒成立是不可能的;

    ,取,则对于也不成立,所以

    时,,整理得

    所以,解得

    时,,整理得

    所以,解得

    综上可得,实数的取值为.

    19

     

     

    通过图象的最高点或最低点可以直接求出,结合函数相邻零点求出为函数的最小正周期),最后利用正弦型函数最小正周期公式求出,最后把其中一个点的坐标代入函数解析式中求出的值,最后写出正弦型函数的解析式.

    【详解】

    由图像知,.

    设函数的最小正周期为,

    所以

    把点代入解析式中有:

    所以函数的解析式为:.

    20.(1)选①②③;(2.

     

    1)根据题意可得出函数的最小正周期,可求得的值,根据所选的条件得出关于的表达式,然后结合所选条件进行检验,求出的值,综合可得出函数的解析式;

    2)求得,由可计算得出,进而可得出,由参变量分离法得出,利用基本不等式求得的最小值,由此可得出实数的取值范围.

    【详解】

    1)由题意可知,函数的最小正周期为.

    ,因为函数的一条对称轴,则

    解得

    ,所以,的可能取值为.

    ,则,则,不合乎题意;

    ,则,则,合乎题意.

    所以,

    ,因为函数的一个对称中心,则

    解得

    ,所以,的可能取值为.

    ,则,当时,

    此时,函数在区间上单调递增,不合乎题意;

    ,则,当时,

    此时,函数在区间上单调递减,合乎题意;

    所以,

    ,将函数向左平移个单位得到的图象关于轴对称,

    所得函数为

    由于函数的图象关于轴对称,可得

    解得

    ,所以,的可能取值为.

    ,则,不合乎题意;

    ,则,合乎题意.

    所以,

    2)由(1)可知

    所以,

    时,,所以,

    所以,

    ,则

    可得

    所以,

    由基本不等式可得

    当且仅当时,等号成立,所以,.

     

    结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:

    1

    2

    3

    4.

    21(1)

    (2)

     

     

    1)由图像求得解析式,再利用整体法求出单调区间,再赋值求交集即可求解;(2)换元法得的范围,利用二次函数讨论对称轴与区间的关系求最小值求解a

    (1)

    是线段DM的中点,

    函数

    .周期,解得

    解得,又

    ,解得,当时,

    函数上的单调递增区间为

    (2)

    ,则

    ,则函数图象的对称轴为直线

    ,即时,,解得

    ,即时,

    解得(舍去);

    ,即时,

    解得(舍去).综上,

     

    相关试卷

    高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质课后作业题: 这是一份高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质课后作业题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册5.4 三角函数的图象与性质课堂检测: 这是一份高中数学人教A版 (2019)必修 第一册5.4 三角函数的图象与性质课堂检测,共17页。试卷主要包含了下列说法等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册第四章 指数函数与对数函数4.1 指数课时作业: 这是一份高中数学人教A版 (2019)必修 第一册第四章 指数函数与对数函数4.1 指数课时作业,共11页。试卷主要包含了1 指数》提升训练,已知抛物线C,计算a2a⋅3a2的结果为,912=,把根式x−x化成分数指数幂是,下列判断正确的有,下列表达式中不正确的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map