高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式课文配套课件ppt-课件下载-教习网
终身会员
搜索
    上传资料 赚现金

    人教A版高二数学选择性必修第三册7-1条件概率与全概率课件

    立即下载
    加入资料篮
    人教A版高二数学选择性必修第三册7-1条件概率与全概率课件第1页
    人教A版高二数学选择性必修第三册7-1条件概率与全概率课件第2页
    人教A版高二数学选择性必修第三册7-1条件概率与全概率课件第3页
    人教A版高二数学选择性必修第三册7-1条件概率与全概率课件第4页
    人教A版高二数学选择性必修第三册7-1条件概率与全概率课件第5页
    人教A版高二数学选择性必修第三册7-1条件概率与全概率课件第6页
    人教A版高二数学选择性必修第三册7-1条件概率与全概率课件第7页
    人教A版高二数学选择性必修第三册7-1条件概率与全概率课件第8页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式课文配套课件ppt

    展开

    这是一份高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式课文配套课件ppt,共32页。PPT课件主要包含了条件概率,探究新知,典型例题,设PA0则,条件概率的性质,全概率公式,PR2R1,PB2R1,PR2B1,PB2B1等内容,欢迎下载使用。


    某个班级有45名学生,其中男生、女生的人数及团员的人数如下表所示,在班级里随机选择一人做代表:
    (1)选到男生的概率是多大?
    分析:随机选择一人做代表,则样本空间Ω包含45个等可能的样本点.B表示事件“选到男生”,由上表可知,n(Ω)=45,n(B)=25
    (2)如果已知选到的是团员,那么选到的是男生的概率是多大?
    假设生男孩与生女孩是等可能的,现考虑有两个小孩的家庭,随机选择一个家庭,那么:
    (1)该家庭中两个小孩都是女孩的概率是多大?
    分析:用b表示男孩,g表示女孩,则样本空间Ω={bb,bg,gb,gg},且所有样本点是等可能的.用A表示事件“选择的家庭中有女孩”,B表示事件“选择的家庭中两个孩子都是女孩”,则A={bg,gb,gg},B={gg}
    (2)如果已经知道这个家庭有女孩,那么两个小孩都是女孩的概率有多大?
    概率乘法公式 P(AB)=P(A)P(B|A)
    当P(A)>0时,当且仅当事件A与B相互独立时,有P(B|A)=P(B)
    例1 在5道试题中有3道代数题和2道几何题,每次从中随机抽出1道题,抽出的题不再放回,求:
    (1)第1次抽到代数题且第2次抽到几何题的概率;
    (2)在第1次抽到代数题的条件下,第2次抽到几何题的概率.
    (1)P(Ω|A)=1;
    (2)如果B,C是两个互斥事件,则P(B∪C | A)=P(B|A)+P(C|A);
    (3)设 和B互为对立事件,则
    分析:用 Ri表示事件“第i次摸到红球”,Bi表示事件“第i次摸到蓝球”,i=1,2.事件R2可按第1次可能的摸球结果(红球或蓝球)表示为两个互斥事件的并,即R2=R1R2UB1R2.
    利用概率的加法公式和乘法公式,得
    按照某种标准,将一个复杂事件表示为两个互斥事件的并,再由概率的加法公式和乘法公式求得这个复杂事件的概率.
    注意:全概率公式一般适用于前提条件未知或者前一个步骤未知的情况下,求某一事件的概率.
    利用全概率公式,可以把比较复杂事件概率的计算问题,化为若干个互不相容的较简单情形,分别求概率然后求和.
    例2 某学校有A,B两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A餐厅,那么第2天去A餐厅的概率为0.6;如果第1天去B餐厅,那么第2天去A餐厅的概率为0.8.计算王同学第2天去A餐厅用餐的概率.
    分析:第2天去哪家餐厅用餐的概率受第1天在哪家餐厅用餐的影响,可根据第1天可能去的餐厅,将样本空间表示为“第1天去A餐厅”和“第1天去B餐厅”两个互斥事件的并,利用全概率公式求解.
    解:设A1=“第1天去A餐厅用餐”, B1=“第1天去B餐厅用餐”, A2=“第2天去A餐厅用餐”,
    则Ω=A1∪B1,且A1与B1互斥,根据题意得P(A1)=P(B1)=0.5, P(A2| A1)=0.6, P(A2| B1)=0.8,由全概率公式,得P(A2)= P(A1) P(A2| A1)+ P(B1) P(A2| B1)=0.5x0.6+
    因此,王同学第2天去A餐厅用餐的概率为0.7.
    注意:贝叶斯公式一般适用于已知事件的结果,求某一种情况发生的概率.
    【例1】 集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.
    变式探究1在本例条件下,求乙抽到偶数的概率.
    变式探究2若甲先取(放回),乙后取,设事件M为“甲抽到的数大于4”,事件N为“甲、乙抽到的两数之和等于7”,求P(N|M).
    规律方法 求条件概率P(B|A)的关键是先求出P(AB),P(A),再利用条件概率公式求出P(B|A).在古典概型中,样本空间Ω包含的样本点的个数为n(Ω),事件A包含的样本点的个数为n(A),事件AB包含的样本点的个数为n(AB),
    变式训练1某校高三(1)班有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.从该班任选一人作为学生代表:(1)求选到的是共青团员的概率;(2)求选到的既是共青团员又是第一小组学生的概率;(3)已知选到的是共青团员,求他是第一小组学生的概率.
    解设“选到的是共青团员”为事件A,“选到的是第一小组学生”为事件B,则“选到的既是共青团员又是第一小组学生”为事件AB.
    【例2】 一张储蓄卡的密码共有6位数字,每位数字都可从0~9这十个数中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过3次就按对的概率;(2)如果他记得密码的最后一位的数字不大于4,不超过3次就按对的概率.
    规律方法 当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互斥的较简单的事件之和,求出这些较简单事件的概率,再利用P(B∪C|A)=P(B|A)+P(C|A)便可求得所求事件的概率.但应注意这个公式在“B与C互斥”这一前提下才成立.
    变式训练2在一个袋子中装有除颜色外其他都相同的10个球,其中有1个红球、2个黄球、3个黑球、4个白球,从中依次不放回地摸2个球,求在摸出的第一个球是红球的条件下,第二个球是黄球或黑球的概率.
    解设“摸出的第一个球为红球”为事件A,“摸出的第二个球为黄球”为事件B,“摸出的第二个球为黑球”为事件C.
    【例3】 有一批产品是由甲、乙、丙三厂同时生产的,其中甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲厂产品正品率为95%,乙厂产品正品率为90%,丙厂产品正品率为85%,如果从这批产品中随机抽取一件,试计算该产品是正品的概率多大.
    解 设A,B,C分别表示抽得产品是甲厂、乙厂、丙厂生产的,D表示抽得产品为正品,则由已知,P(A)=50%,P(B)=30%,P(C)=20%,P(D|A)=95%,P(D|B)=90%,P(D|C)=85%,从而任取一件产品为正品的概率可由全概率公式得到:P(D)=P(A)P(D|A)+P(B)P(D|B)+P(C)P(D|C)
    规律方法 利用全概率公式求概率为了求复杂事件的概率,往往可以把它分解成若干个互不相容的简单事件,然后利用条件概率和概率的乘法公式,求出这些简单事件的概率,最后将概率相加,得到最终结果,这一方法实质就是全概率公式的应用.
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map