小学数学北师大版五年级上册3 探索活动:3的倍数的特征教案及反思
展开
北师大版数学五年级上册《3的倍数特征》教学设计
课前思考
本课属于“数与代数”领域,是在整数的认识,整数的四则运算,因数,倍数,2、5的倍数特征的基础上进行教学的,是求最大公因数、最小公倍数的重要基础。笔者为让学生更自主地学习、发现规律,在教学设计中作了一个比较大的调整:将学习材料由百数表换成组数。学生发现在探索3的倍数特征过程中很难从正面发现规律,而更多地受2、5的倍数特征的负迁移。将组数作为学生的学习材料,更能把学生的探索聚焦在数字特征上,从而发现和理解规律。
教学目标
1. 理解3的倍数特征,能根据特征判断一个数是否
为3的倍数。
2. 经历3的倍数特征的过程,通过观察、类比、猜想、验证等活动,获得探索规律的基本方法和经验。
3. 在探索3的倍数的特征的过程中,感受数学的魅力,增强学习数学的兴趣。
教学重难点
理解3的倍数特征,掌握判断的方法。
探究3的倍数的特征,理解3的倍数特征的原理。
教学过程
一、 创设情境,导入新知
出示:21 42 63 84 15 36 57 78 99
11 32 53 74 95 26 47 68 89
师:上面哪些自然数是3的倍数?请男生口算第一组,女生口算第二组。
学生通过口算发现:第一组自然数都是3的倍数,而第二组自然数都不是3的倍数。
引导概括:判断一个自然数是不是3的倍数,只要看看能否被3整除(除以3没有余数)
师:那我们判断一个自然数是不是3的倍数,是否可以像判断2和5的倍数一样只看个位呢?请说明理由。
小结:看来,判断一个数是否是2、5的倍数只需要看个位,而判断一个数是否为3的倍数不能只看个位。那么,到底看哪些数位呢?今天这节课,我们就来探索3的倍数特征。(板书:3的倍数特征)
【设计意图】学生已经会用乘法口诀或整除的方法判断一个数是否为某数的倍数。通过规律的寻找、正例与反例的对比,唤起学生原有的知识经验,加深理解倍数的意义和判断一个数是否为某数倍数的方法。此外,借助口算帮助一些思维能力比较弱的孩子消除受2、5倍数特征的负迁移,通过设问,初步形成猜想,激发学生探索3的倍数特征的学习欲望。
二、 猜想验证,探究新知
第一关:组数游戏
1. 游戏热身,抽象意义
出示学习活动单:请从“1、9”“1、5”“4、8”这三组数中任选一组组成两位数
(热身,理解组数的含义)
学生独立尝试得出:“1、9”能组成的两位数分别是19、91,“1、5” 能组成的两位数分别是15、51,“4、8”能组成的两位数分别是48、84。
师:这三组能组成的两位数是3的倍数吗?
反馈发现:15、51、48、84是,19和91不是。
【设计意图:为避免学生理解产生歧义,顺利进行后续的探究活动,特穿插一个游戏示范说明的环节。】
自主探究,感知特征
出示学习活动单:
学生独立尝试组数,交流反馈组数结果, 小组活动过程中教师要引导学生小组内交流并验证是否为3的倍数。
【设计意图】好的学习材料有助于激发学生探究的欲望,探索发现数学规律的本质。组数游戏有利于学生聚焦在所用数字的特征上;材料的准备采用正例和反例混搭,初步感觉到组数游戏背后隐藏着规律,促进学生进一步地思考,发现规律特征,体验对比、抽象等思想方法。
第二关:实验探究
1. 发现问题,产生疑惑
师:你刚才组成了几个3的倍数?有什么发现?
交流后得到3种发现:
①第3、6组数字一个3的倍数的三位数也没组成; ②第1组数字组成了4个3的倍数的三位数;
③第2、4、5、7、8组数字组成了6个3的倍数的三位数且随意组都能组成3的倍数的三位数。
教师根据不同的发现进行追问:
(1) 随意组是什么意思?(不管3个数字放在哪个数位上,也不管组成的数的大小都是3的倍数)
(2) 为什么第3、6组数字一个3的倍数的三位数也组不成呢?
【设计意图:旨在让学生在组数并判断是否为3的倍数过程中发现问题,产生疑惑,驱动内在学习动力,同时也为探究活动指明方向。】
2. 交流想法,探索规律
师:这6组数字随意组都是3的倍数,这2组数字怎么组都不是3的倍数,这应该不是偶然的,请你观察这几组数字,思考是否存在什么特征?
(1)引导学生组内交流想法。
(2)反馈交流
小结:能组成3的倍数的6组数字的和分别是:3、6、9、12、12、15,都是3的倍数,而不能组成的两组数字的和分别是5和8,都不是3的倍数。
大胆猜想,举例验证
师:请仔细观察“2、4、6”这3个数字组成3的倍数的三位数,你发现了什么?
246 264 426 462 624 642
独立探索:不管这3个数字怎么排列,也不管组成的数的大小,都是3的倍数。师:看来3的倍数很有特点,谁能用一句话来说一说你的猜想。
小结:一个数各个数位上的数字之和是3的倍数,那么这个数就是3的倍数。
问题1:你觉得我们该如何来验证我们的猜想?
学生可能会想到用举例验证
追问1:你觉得这样的例子能举的完吗?
追问2:怎么样来举例子比较合理?
提炼总结:例子的类型齐全(1位数、2位数、3位数、4位数……位数更多的数;大的数,小的数);正例和反例。
小结:看来我们的猜想是正确的,今天我们做了一件非常厉害的事,科学发现就是像这样先有猜想,再通过严谨地验证得到的。
【设计意图:让学生经历完整的“观察—猜想—验证—得到结论”的学习过程,在自主探究和动手实践中感受“猜想—验证”这一探索数学知识的重要方法。这个环节教师要舍得花时间,让学生初步尝试“不完全归纳法”抽象证明的方法,体会使用枚举法需注意举例的全面性(类型齐全、反例验证),体验数学的严谨性,为今后研究问题埋下科学严谨的种子。】
第三关:追溯原理
师:通过刚刚的探索我们得到了3的倍数特征是什么样,但数学研究不能只停留在是什么,还要追问为什么?那现在你们还有什么问题想问吗?
【预设】
学生可能会提问:为什么3的倍数是看每个数位上的数字之和?
出示学习单:探索246能被3整除的原理。
同桌合作发现:先把246分成200、40和6,再把这3个数分别除以3,把他们的余数相加看看是否能被3整除,算式如下:
师:这位同学的想法你听懂了吗?你还有其他方法吗?
学生阐述自己的想法
师:老师也想把自己的想法分享给大家。
课件演示
以246为例,小方块图为载体,数形结合便于学生理解掌握。
246可以表示为2×100+4×10+6,引导学生将其分解为2×(99+1)+4×(9+1)+6,去掉括号整理后得到(2×99+4×9)+(2+4+6),其中(2×99+4×9)一定是3的倍数,所以只需要考虑(2+4+6)是否为3的倍数,所以只需要考虑(2+4+6)是否是3的倍数,即只需要考虑各个数位上数字之和是否是3的倍数。
师:老师的分享你们听懂了吗,“2,4,6”这3个数字不仅可以组成246,这三个数字组成的其他的三位数谁想来试试说明为什么3的倍数是要看每个数位上的数字之和?
生举例说明(如264、426、462等)
师追问:你能试着用这种方法解释一下为什么判断一个数是否为2和5的倍数只要看个位就可以了。
小结
师:数学学习要知其然更知其所以然,只有知道真谛了,我们才能真正地把数学活学活用。
三、巩固练习,内化知识
1. 基础练习
淘气爸爸每月工资为856元,他3个月的工资是多少?
爸爸认为:856×3=2468(元);
妈妈认为:856×3=2558(元);
淘气认为:856×3=2568(元)。
请用今天所学的快速判断谁可能是正确的。
2.提升练习
请判断下面哪些数是3的倍数,圈出来,并说说理由。
发现:333、6666、99999、369963这几个数各个数位上的数字都是3的倍数,所以这些数的和也是3的倍数,这些数就是3的倍数。999998是3的倍数判断理由,9一定是3的倍数,所以前面都可以不看,只要看8就可以了。8不是3的倍数,所以999998也不是。
得出技巧:是3的倍数的那个数位不用看!
3.综合练习
《三国演义》中描写的人物总数是用1、9两个数字(这两个数字可以重复使用)组成的四位数,它比1000大,比1200小,而且是3的倍数。《三国演义》总共描写了有几个人物呢?
小学西师大版2,3,5的倍数特征教案设计: 这是一份小学西师大版<a href="/sx/tb_c106006_t8/?tag_id=27" target="_blank">2,3,5的倍数特征教案设计</a>,共6页。教案主要包含了按要求填一填,验证得出结论等内容,欢迎下载使用。
北师大版五年级上册3 探索活动:3的倍数的特征教学设计: 这是一份北师大版五年级上册3 探索活动:3的倍数的特征教学设计,共4页。教案主要包含了复习回顾,导入新课,自主活动,探索新知,当堂训练,课堂总结,布置作业等内容,欢迎下载使用。
五年级上数学教学设计3的倍数特征_北师大版: 这是一份五年级上数学教学设计3的倍数特征_北师大版,共4页。教案主要包含了情境导入,探究新知,概括特征,巩固应用,拓展延伸,课后评价等内容,欢迎下载使用。