所属成套资源:高考物理磁场常用模型最新模拟题精练
专题03 磁动力模型-高考物理磁场常用模型最新模拟题精练
展开
这是一份专题03 磁动力模型-高考物理磁场常用模型最新模拟题精练,文件包含专题3磁动力模型解析版docx、专题3磁动力模型原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
高考物理《磁场》常用模型最新模拟题精练
专题3. 磁动力模型
一.选择题
1. .(2023广东重点高中期末)如图为一款热销“永动机”玩具示意图,其原理是通过隐藏的电池和磁铁对小钢球施加安培力从而实现“永动”。小钢球从水平光滑平台的洞口M点静止出发,无磕碰地穿过竖直绝缘管道后从末端N点进入平行导轨PPʹ-QQʹ,电池、导轨与小钢球构成闭合回路后形成电流,其中电源正极连接导轨PQ,负极连接PʹQʹ;通电小钢球在底部磁场区域受安培力加速,并从导轨的圆弧段末端QQʹ抛出;然后小钢球恰好在最高点运动到水平光滑平台上,最终滚动至与挡板发生完全非弹性碰撞后再次从M点静止出发,如此循环。已知导轨末端QQʹ与平台右端的水平、竖直距离均为0.2m,小钢球质量为40g,在导轨上克服摩擦做功为0.04J,其余摩擦忽略不计,重力加速度g取10m/s2,则( )
A.磁铁的N极朝上
B.取下电池后,小钢球从M点静止出发仍能回到平台上
C.小钢球从导轨末端QQʹ抛出时速度为2m/s
D.为了维持“永动”,每个循环需安培力对小球做功大于0.04J
【参考答案】.AD
【名师解析】.由电路可知钢球中电流方向垂直于纸面向里,由左手定则可知磁铁上方轨道处磁场方向向上,故磁铁N极朝上,故A正确;
取下电池后,小球缺少安培力做功,即使从导轨末端抛出,初速度减小也将导致不能到达平台,故B错误;
斜抛到最高点可反向看作平抛运动,则,
解得,
所以
所以抛出时的速度为,故C错误;
为了维持“永动”,每个循环安培力做的功应该补充机械能的损失,一部分是克服摩擦力做的功,还有一部分是碰撞挡板的损失,一定大于0.04J,故D正确。
2.(2022河北普通高中第一次联考)如图甲为市面上常见的一种电动车,图乙为这种电动车的电动机的工作示意图。电动机电路两端电压为10V,额定功率为200W,A、B为线圈上的两点。下列选项中不正确的是
甲 乙
A.在额定功率下运行时,电动机电路中的电流大小为20A
B.电刷a接入电路正极,电刷b接入电路负极
C.A点与B点间电流方向在不断变化
D.直流电源可以驱动该电动机正常工作
【参考答案】.B
【名师解析】电动机的电功率表达式为,代入题中数据可得:,解得,A项正确;B.磁场方向在磁体外部由N极指向S极,由电动机运转方向可知,段受力方向向上,再由左手定则可知,电流方向由A指向B,故b为正极,a为负极,B项错误;C.电动机转过180°后两半铜环所接电刷互换,间电流方向改变,依次类推可知,A点与B点间电流方向不断改变,C项正确;D.直流电源可以驱动该电动机正常工作,D项正确。
【命题意图】本题以电动车为背景,主要考查理解能力、推理论证能力,体现科学思维、科学探究、科学态度与责任的要求。
3. (2021南京期末)电磁泵在目前的生产、科技中得到了广泛应用.如图所示,泵体是一个长方体,边长为L1,两侧端面是边长为L2的正方形;流经泵体内的液体密度为,在泵头通入导电剂后液体的电导率为(电阻率的倒数),泵体所在处有方向垂直向外的磁场B,把泵体的上下两表面接在电压为U(内阻不计)的电源上.则
A.泵体上表面应接电源负极
B.通过泵体的电流I = UL2
C.仅将磁场方向反向,电磁泵仍能正常工作
D.增大液体的电导率可获得更大的抽液高度
【参考答案】D
【名师解析】当泵体上表面接电源的正极时,电流从上向下流过泵体,这时受到的磁场力水平向左,拉动液体,选项A错误;根据电阻定律,泵体内液体的电阻,因此流过泵体的电流,选项B错误;仅将磁场方向反向,根据左手定则,安培力和原来相反,液体的运动方向也会相反,电磁泵不能正常工作,选项C错误;若增大液体的电导率,可以使电流增大,受到的磁场力增大,使抽液高度增大,选项D正确。
4.(2020成都调研)如图,等离子体以平行两极板向右的速度v=100m/s进入两极板之间,平行极板间有磁感应强度大小为0.5T、方向垂直纸面向里的匀强磁场,两极板间的距离为10cm,两极板间等离子体的电阻r=1Ω。小波同学在玻璃皿的中心放一个圆柱形电极接电路中B点,沿边缘放一个圆环形电极接电路中A点后完成“旋转的液体”实验。若蹄形磁铁两极间正对部分的磁场视为匀强磁场,上半部分为S极, R0=2.0Ω,闭合开关后,当液体稳定旋转时电压表(视为理想电压表)的示数恒为2.0V,则
A. 玻璃皿中的电流方向由中心流向边缘
B. 由上往下看,液体做顺时针旋转
C. 通过R0的电流为1.5A
D. 闭合开关后,R0的热功率为2W
【参考答案】D
【名师解析】
由左手定则可知,正离子向上偏,所以上极板带正电,下极板带负电,所以由于中心放一个圆柱形电极接电源的负极,沿边缘放一个圆环形电极接电源的正极,在电源外部电流由正极流向负极,因此电流由边缘流向中心,器皿所在处的磁场竖直向上,由左手定则可知,导电液体受到的磁场力沿逆时针方向,因此液体沿逆时针方向旋转,故A,B错误;当电场力与洛伦兹力相等时,两极板间的电压不变,则有
,得,由闭合电路欧姆定律有,解得。
R0的热功率,故C错误,D正确。
5.(2020高考模拟示范卷3)某兴趣小组制作了一个简易的“转动装置”,如图甲所示,在干电池的负极吸上一块圆柱形强磁铁,然后将一金属导线折成顶端有一支点、底端开口的导线框,并使导线框的支点与电源正极、底端与磁铁均良好接触但不固定,图乙是该装置的示意图。若线框逆时针转动(俯视),下列说法正确的是
A. 线框转动是因为发生了电磁感应
B. 磁铁导电,且与电池负极接触的一端是S极
C. 若将磁铁的两极对调,则线框转动方向不变
D. 线框转动稳定时的电流比开始转动时的大
【参考答案】B
【名师解析】对线框的下端平台侧面分析,若扁圆柱形磁铁上端为S极,下端为N极,周围磁感线由上往下斜穿入线框内部,在垂直于纸面向外的径向上,磁感应线有垂直于纸面向里的分量,在此径向上的负电荷由下往上运动,由左手定则知:此负电荷受到垂直于径向沿纸面向右的洛伦兹力,即在径向的左垂线方向;同理,其他任一径向上的电荷均受到左垂线方向的洛伦兹力(中心原点除外),所以,由上往下看(俯视),线框沿逆时针转动,若扁圆柱形磁铁上端为N极,下端为S极,则转动方向相反,所以该装置的原理是电流在磁场中的受力,不是电磁感应。故AC错误,B正确;稳定时,因导线切割磁感应线,则线框中电流比刚开始转动时的小,故D错误。
6. 超导电磁船是一种不需要螺旋桨推进的低噪音新型船,如图是电磁船的简化原理图,AB和CD是与电源相连的导体板,AB与CD之间部分区域浸没在海水中并有垂直纸面向内的匀强磁场(磁场由固定在船上的超导线圈产生,其独立电路部分未画出),以下说法正确的是
A.使船前进的力,是磁场对海水中电流的安培力
B.要使船前进,海水中的电流方向从CD板指向AB板
C.同时改变磁场的方向和电源正负极,推进力方向将与原方向相反
D.若接入电路的海水电阻为R,其两端的电压为U,则船在海水中前进时,AB与CD间海水中的电流强度小于
【参考答案】D
【名师解析】 根据题述,AB与CD之间部分区域浸没在海水中并有垂直纸面向内的匀强磁场,海水中该部分为导体,与导体板和电源构成回路,海水通电后受到安培力作用,磁场对海水有向后的作用力,根据牛顿第三定律,海水对磁场(实质是海水对超导电磁船)有向前的作用力,该力是使船前进的力,选项A错误;根据左手定则,要使船前进,海水中的电流方向从AB板指向CD板,选项B错误;同时改变磁场的方向和电源正负极,推进力方向将与原方向相同,选项C错误;若接入电路的海水电阻为R,其两端的电压为U,则船在海水中前进时,由于可视为导线的海水切割磁感线要产生与电流方向相反的感应电动势,所以AB与CD间海水中的电流强度小于,选项D正确。
7. (2023云南昭通名校联考).电磁炮是一种理想的兵器,它的主要原理如图所示,利用这种装置可以把质量为m=2.0 g的弹体(包括金属杆EF的质量)加速到6 km/s,若这种装置的轨道宽为d=2 m,长L=100 m,电流I=10 A,轨道摩擦不计且金属杆EF与轨道始终接触良好,则下列有关轨道间所加匀强磁场的磁感应强度和磁场力的最大功率结果正确的是( ).
A.B=18 T,Pm=1.08×108W
B.B=0.6 T,Pm=7.2×104W
C.B=0.6 T,Pm=3.6×106W
D.B=18 T,Pm=2.16×106W
.【参考答案】D
【名师解析】 通电金属杆在磁场中受安培力的作用而对弹体加速,由功能关系得BIdL=mv,代入数值解得B=18 T;当速度最大时磁场力的功率也最大,即Pm=BIdvm,代入数值得Pm=2.16×106W,故D项正确.
8.电磁轨道炮工作原理如题图所示。待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触。电流I从一条轨道流入,通过导电弹体从另一条轨道流回。轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I成正比。通电的弹体在轨道上受到的安培力在作用而高速射出。现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法是
题图
A.只将轨道长度L变为原来的2倍
B.只将电流I增加到原来的2倍
C.只将弹体质量减小到原来的一半
D.将弹体质量减小到原来的一半,轨道长度L变为原来的2倍,其它量不变,
【参考答案】.BD
【名师解析】
设B=kI,轨道之间距离d,则发射过程中,安培力F=BId做功W=FL=kI2dL,由动能定理kI2dL=mv2,要使弹体的出射速度增加至原来的2倍,可采用的办法是只将电流I增加到原来的2倍;或只将弹体质量减小到原来的1/4;或只将轨道长度L变为原来的2倍;或将弹体质量减小到原来的一半,轨道长度L变为原来的2倍,其它量不变,选项BD正确。
二.计算题
1. (2022年高考广东梅州二模)我国新一代航母阻拦系统采用电磁阻拦技术,基本原理如图所示,飞机着舰时关闭动力系统,通过绝缘阻拦索钩住轨道上的一根金属棒ab,金属棒、导轨和定值电阻R形成一闭合回路,飞机与金属棒瞬间获得共同速度v0=180km/h,在磁场中共同减速滑行至停下,已知飞机质量M=2.7×104kg,金属棒ab质量m=3×103kg、电阻r=4Ω,导轨间L=50m,定值电阻R=6Ω,匀强磁场磁感应强度B=5T,除安培力外飞机克服其它阻力做的功为1.5×106J,为研究问题的方便,导轨电阻不计,阻拦索的质量和形变不计。求:
(1)飞机着舰瞬间金属棒ab中感应电流I的大小和方向;
(2)金属棒ab中产生的焦耳热Q。
【参考答案】(1),方向b到a;(2)1.44×107J
【名师解析】
(1)飞机着舰瞬间金属棒中感应电动势
感应电流
解得
由右手定则:感应电流方向b到a
(2)飞机至舰至停下,由动能定理
解得
由焦耳定律知总电热为
定值电阻和金属棒产生的热量之比为
解得
2.(20分)(2021郑州三模)航空母舰作为大国重器,其形成有效战力的重要标志之一是其携带的舰载机形成战斗力。质量为m的舰载机模型,在水平跑道上由静止匀加速起飞,假定起飞过程中受到的平均阻力恒为舰载机所受重力的k倍,发动机牵引力恒为F,离开地面起飞时的速度为v,重力加速度为g.求:
(1)舰载机模型的起飞距离(离开地面前的运动距离)以及起飞过程中平均阻力的冲量;
(2)若舰载机起飞利用电磁弹射技术将大大缩短起飞距离。图甲为电磁弹射装置的原理简化示意图,与飞机连接的金属块(图中未画出)可以沿两根相互靠近且平行的导轨无摩擦滑动。使用前先给电容为C的大容量电容器充电,弹射飞机时,电容器释放储存电能所产生的强大电流从一根导轨流人,经过金属块,再从另一根导轨流出;导轨中的强大电流形成的磁场使金属块受到磁场力而加速,从而推动舰载机起飞。
①在图乙中画出电源向电容器充电过程中电容器两极板间电压u与极板上所带电荷量q的图像,在此基础上求电容器充电电压为U0时储存的电能;
②当电容器充电电压为Um时弹射上述舰载机模型,在电磁弹射装置与舰载机发动机同时工作的情况下,可使起飞距离缩短为x.若金属块推动舰载机所做的功与电容器释放电能的比值为η,舰载机发动机的牵引力F及受到的平均阻力不变。求完成此次弹射后电容器剩余的电能。
【命题意图】本题以舰载机起飞利用电磁弹射技术为情景,考查动能定理、动量定理、半衰期及其相关知识点,考查的学科核心素养是功和能的观念、动量观念和科学思维能力。
【压轴题透析】(1)利用动能定理得出舰载机模型的起飞距离,利用动量定理得出起飞过程中平均阻力的冲量;(2)利用电源向电容器充电过程中电容器两极板间电压u与极板上所带电荷量q的图像面积的物理意义,得出电容器充电电压为U0时储存的电能;
(3)利用动能定理和能量守恒定律得出完成此次弹射后电容器剩余的电能。
【解题思路】
.(20分)(1)起飞过程,由动能定理得
① 2分
解得 1分
由动量定理得:(F-kmg)t=mv 1分
If =kmgt 1分
由②③解得: 1分
(2)①如图所示 2分
则储存的电能为 2分
②假设金属块推动舰载机所做的功为W电,电容器释放的电能为E电,剩余的电能为,则根据动能定理得
3分
且W电=ηE电 2分
3分
解得2分
2. (2021湖南张家界期末)21.如图所示为某研究小组设计的电磁炮供弹和发射装置。装置由倾角θ=37°倾斜导轨和水平导轨在AB处平滑连接而成。倾斜导轨处有垂直导轨平面向上的匀强磁场,磁感应强度为B,ABCD区域无磁场,CD右侧为发射区域,另加磁场.倾斜导轨顶端的单刀双掷开关可连接阻值R=1.0Ω的电阻和电容C的电容器。质量m=0.2kg、电阻r=1.0Ω的金属杆ab代替电磁炮弹,倾斜导轨光滑,ABCD区域的导轨粗糙,动摩擦因数为μ=0.5,先研究其供弹过程:开关打到S1处,金属杆从倾斜导轨某个位置及以上任意位置由静止释放,金属杆最终都恰好精确停在CD处;已知导轨间距为L=1.0m,电磁炮发射位置CD与AB相距x=0.4m ,sin37°=0.6,cos37°=0.8,不计空气阻力。
(1)求金属杆到达AB处时速度v的大小;
(2)为精确供弹,求磁感应强度B的大小;
(3)若将开关拨向S2,再将弹体由静止释放,试分析在倾斜轨道上下滑的过程中导体棒运动的运动情况,定性画出v-t图象,并写出必要的分析和推理过程(此问要求用题中字母符号表示)。
【名师解析】:(1)金属杆从AB到CD的过程,根据动能定理得:
可得:
v=2m/s。................2分
(2)为精确供弹,金属杆只要在倾斜导轨上最终达到匀速运动,则有:
又
F安=
解得: B= T
(3) 对电容器有
电流
根据牛顿第二定律
安培力
解得:
.....................3分
a与时间无关,所以弹体匀加速运动,运动图像
.....................1分
3(18分)(2020天津和平区质检)电磁炮是利用电磁力对弹体加速的新型武器,具有速度快,效率高等优点。其原理结构可简化为如图甲所示的模型:两根无限长、光滑的平行金属导轨MN、PQ固定在水平面内,相距为L,“电磁炮”弹体为质量为m的导体棒ab,垂直于MN、PQ放在轨道上,与轨道接触良好,弹体在轨道间的电阻为R,整个装置处于竖直向下的匀强磁场中,磁感应强度大小为B,“电磁炮”电源的电压能自行调节,用以保证“电磁炮”在轨道上做匀加速运动最终发射出去,其中可控电源的内阻为r,不计空气阻力,导轨的电阻不计。求:
(1)考虑到电磁感应现象,定性描述电源的电压如何自行调节,才能保证“电磁炮”匀加速发射;
(2)弹体从静止经过时间t加速到v的过程中系统消耗的总能量;
(3)把此装置左端电源换成电容为C的电容器,导轨倾斜,与水平夹角为θ(如图乙所示),使磁场仍与导轨平面垂直,将弹体由静止释放,某时刻其速度为v1,定性画出该过程导体棒运动的v-t图象,并写出必要的分析和推理过程。
【名师解析】(1)由于弹体速度增大,弹体切割磁感线产生的感应电动势增大,电源电压应随之增大,抵消产生的感应电动势,以保证电源为加速弹体提供恒定的电流。
(2)F安=BIL
F安=ma,v=at,
Q=I2(R+r)t,
E=Q+mv2,
联立解得:E=(R+r)+mv2。
(3)△q=C△U=CBL△v,
i=△q/△t=CBLa,
由牛顿第二定律可知,mgsinθ-F安=ma,
F安=BiL
联立解得:a=,与时间无关。
所以弹体做匀加速直线运动,v——t图像如图所示。
4.(2023北京房山联考)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。电磁轨道炮示意图如图所示。两根固定于水平面内的光滑平行金属导轨间距为L,导轨间存在垂直于导轨平面向里、磁感应强度大小为B的匀强磁场,导轨电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。电容器电容C,首先开关接1,使电容器完全充电。然后将S接至2,MN由静止开始向右加速运动。当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度vm,之后离开导轨。问:
(1)这个过程中通过MN的电量q;
(2)直流电源的电动势E;
(3)某同学想根据第一问的结果,利用的公式求MN加速过程的位移,请判断这个方法是否可行,并说明理由。
【名师解析】.(1)设在此过程中MN的平均电流为,
MN上受到平均安培力:
由动量定理,有:
代入解得: 7分
(2)开关S接2后,MN开始向右加速运动,速度达到最大值vm时,MN上的感应电动势
最终电容器所带电荷量
电容器最初带电,
代入数据解得: 7分
(3)不可行,过程中任一时刻电流,从式中可以看出电流不恒定,取一很短时间,流过MN电量,只有当时才有,而本题过程中始终不满足,该同学方法不可行。 6分
5(2018浙江选考)压力波测量仪可将待测压力波转换为电压信号,其原理如图1所示。压力波p(t)进入弹性盒后,通过与铰链O相连的“-|”型轻杆L,驱动杆端头A处的微型霍尔片在磁场中沿X轴方向做微小振动,其位移x与压力p成正比(x=αp,α>0)。霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d、单位体积内自由电子数为n的N型半导体制成。磁场方向垂直于X轴向上,磁感应强度大小为B=Bo(1-β|x|),β>0。无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿C1C2方向的电流I,则在侧面上D1 、D2两点间产生霍尔电压Uo。
(1)指出D1 、D2两点哪点电势高;
(2)推导出U0与I、B0之间的关系式(提示:电流I与自由电子定向移动速率v之间关系为I=nevbd,其中e为电子电荷量);
(3)弹性盒中输入压力波p(t),霍尔片中通以相同电流,测得霍尔电压UH随时间t变化图像如图3。忽略霍尔片在磁场中运动产生的电动势和阻尼,求压力波的振幅和频率。(结果用U0、U1、t0、α及β表示)
【参考答案】(1) D1点电势高 (2)
(3) ,
【名师解析】由左手定则可判定电子偏向D2边,所以D1边电势高;当电压为U0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I与自由电子定向移动速率v之间关系为I=nevbd求出U0与I、B0之间的关系式;图像结合轻杆运动可知,0-t0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U0与I、B0之间的关系式求出压力波的振幅。
解:(1)电流方向为C1C2,则电子运动方向为C2C1,由左手定则可判定电子偏向D2边,所以D1边电势高;
(2)当电压为U0时,电子不再发生偏转,故电场力等于洛伦兹力
①
由电流
得: ②
将②带入①得
(3)图像结合轻杆运动可知,0-t0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t0
所以,频率为:
当杆运动至最远点时,电压最小,即取U1,此时
取x正向最远处为振幅A,有:
所以:
解得:
根据压力与唯一关系可得
因此压力最大振幅为:
6.. 电磁弹是我国最新研究的重大科技项目,原理可用下述模型说明.如图甲所示,虚线MN右侧存在一个竖直向上的匀强磁场,一边长L的正方形单匝金属线框abcd放在光滑水平面上,电阻为R,质量为m,ab边在磁场外侧紧靠MN虚线边界.t=0时起磁感应强度B随时间t的变化规律是B=B0+kt(k为大于零的常数),空气阻力忽略不计.
(1)求t=0时刻,线框中感应电流的功率P;
(2)线框cd边穿出磁场时通过导线截面的电荷量q;
(3)若用相同的金属线绕制相同大小的n匝线框,如图乙所示,在线框上加一质量为M的负载物,证明:载物线框匝数越多,t=0时线框加速度越大.
题图
M
N
乙
a
b
c
d
B
N
甲
M
a
b
c
d
B
【命题意图】考查电磁感应、法拉第电磁感应定律、电功率、闭合电路欧姆定律、安培力、牛顿运动定律及其相关知识点。
【名师解析】
(1)t=0时刻线框中的感应电动势 (2分)
功率 (1分)
解得 (2分)
(2)由动能定理有 (1分)
解得 (1分)
穿出过程线框中的平均电动势
线框中的电流 (1分)
通过的电量 (1分)
解得 (1分)
(3)n匝线框中t=0时刻产生的感应电动势 (1分)
线框的总电阻R总=nR (1分)
线框中的电流 (1分)
t=0时刻线框受到的安培力 (1分)
设线框的加速度为a,根据牛顿第二定律有
解得 可知,n越大,a越大. (1分)
7.(13分)“电磁炮”是利用电磁力对弹体加速的新型武器,具有速度快,效率高等优点。如图是“电磁炮”的原理结构示意图。光滑水平加速导轨电阻不计,轨道宽为L=0.2m。在导轨间有竖直向上的匀强磁场,磁感应强度B=1×102T。“电磁炮”弹体总质量m=0.2kg,其中弹体在轨道间的电阻R=0.4Ω。可控电源的内阻r=0.6Ω,电源的电压能自行调节,以保证“电磁炮”匀加速发射。在某次试验发射时,电源为加速弹体提供的电流是I=4×103A,不计空气阻力。求:
(1)弹体所受安培力大小;
(2)弹体从静止加速到4km/s,轨道至少要多长?
(3)弹体从静止加速到4km/s过程中,该系统消耗的总能量;
(4)请说明电源的电压如何自行调节,以保证“电磁炮”匀加速发射。
【名师解析】
(1)由安培力公式,F=BIL=8×104N。(2分)
(2)由动能定理,Fx=mv2,(2分)
弹体从静止加速到4km/s,轨道长度x==20m。(1分)
(3)由F=ma,v=at解得发射弹体需要时间t=1×10-2s。(2分)
发射弹体过程中产生的焦耳热Q=I2(R+r)t=1.6×105J。(1分)
弹体动能Ek=mv2=1.6×106J。(1分)
系统消耗总能量E=Ek+Q=1.76×106J。(2分)
(4)由于弹体的速度增大,弹体切割磁感线产生感应电动势,电源的电压增大,抵消产生的感应电动势,以保证电源为加速弹体提供恒定的电流,使电磁炮匀加速发射。(2分)
8.电磁炮是利用磁场对电流的作用力,把电能转变成机械能,使炮弹发射出去的.如图所示,把两根长为s,互相平行的铜制轨道放在磁场中,轨道之间放有质量为m的炮弹,炮弹架在长为L、质量为M的金属杆上,当有大的电流I1通过轨道和炮弹时,炮弹与金属架在磁场力的作用下,获得v1速度时刻加速度为a,当有大的电流I2通过轨道和炮弹时,炮弹最终以最大速度v2脱离金属架并离开轨道,求垂直于轨道平面的磁感强度多大?(设金属架与炮弹在运动过程中所受的总阻力与速度平方成正比).
【名师解析】
设运动中受总阻力,
炮弹与金属架在磁场力和阻力的合力作用下加速,
获得v1速度时,根据牛顿第二定律得:
…①
当炮弹速度最大时,有…②
解得垂直轨道的磁感强度为:B=.
9. 题图是导轨式电磁炮实验装置示意图。两根平行长直金属导轨沿水平方向固定,其间安放金属滑块(即实验用弹丸)。滑块可沿导轨无摩擦滑行,且始终与导轨保持良好接触。电源提供的强大电流从一根导轨流入,经过滑块,再从另一导轨流回电源。滑块被导轨中的电流形成的磁场推动而发射。在发射过程中,该磁场在滑块所在位置始终可以简化为匀强磁场,方向垂直于纸面,其强度与电流的关系为B=kI,比例常量k=2.5×10-6T/A。
已知两导轨内侧间距l=1.5cm,滑块的质量m=30g,滑块沿导轨滑行5m后获得的发射速度v=3.0km/s(此过程视为匀加速运动)。
(1)求发射过程中电源提供的电流强度
(2)若电源输出的能量有4%转换为滑块的动能,则发射过程中电源的输出功率和输出电压各是多大?
(3)若此滑块射出后随即以速度v沿水平方向击中放在水平面上的砂箱,它嵌入砂箱的深度为s'。设砂箱质量为M,滑块质量为m,不计砂箱与水平面之间的摩擦。求滑块对砂箱平均冲击力的表达式。
电 源
l
s'
m
【名师解析】
(1)由匀加速运动公式 a==9×105m/s2
由安培力公式和牛顿第二定律,有 F=IBl=kI2l,kI2l=ma
因此 I==8.5×105A
(2)滑块获得的动能是电源输出能量的4%,即
PΔt×4%=mv2
发射过程中电源供电时间Δt==×10-2s
所需的电源输出功率为P==1.0×109W
由功率P=IU,解得输出电压U==1.2×103V。
(3)分别对砂箱和滑块用动能定理,有
fsM=MV2
f'sm=mV2-mv2
由牛顿第三定律,f=-f',
根据相对运动,sm=sM+s',
由动量守恒:mv=(m+M)V,
联立求得fs'=·mv2。
故平均冲击力f=·。
10 .据报道,最近已研制出一种可投入使用的电磁轨道炮,其原理如题7-2图所示。炮弹(可视为长方形导体)置于两固定的平行导轨之间,并与轨道壁密接。开始时炮弹在导轨的一端,通以电流后炮弹会被磁力加速,最后从位于导轨另一端的出口高速射出。设两导轨之间的距离w=0.10m,导轨长L=5.0m,炮弹质量m=0.30kg。导轨上的电流I的方向如图中箭头所示。可以认为,炮弹在轨道内运动时,它所在处磁场的磁感应强度始终为B=2.0T,方向垂直于纸面向里。若炮弹出口速度为v=2.0×103m/s,求通过导轨的电流I。忽略摩擦力与重力的影响。
【名师解析】
在导轨通有电流I时,炮弹作为导体受到磁场施加的安培力为
F=IwB ①
设炮弹的加速度的大小为a,则有因而
F=ma ②
炮弹在两导轨间做匀加速运动,因而
v2=2aL ③
联立①②③式得
④
代入题给数据得:I=0.6×105A 。 ⑤
11.(2017天津)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。首先开关S接1,使电容器完全充电。然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。问:
(1)磁场的方向;
(2)MN刚开始运动时加速度a的大小;
(3)MN离开导轨后电容器上剩余的电荷量Q是多少。
【参考答案】(1)磁场的方向垂直于导轨平面向下 (2)
(3)
【名师解析】
(3)电容器放电前所带的电荷量
开关S接2后,MN开始向右加速运动,速度达到最大值vm时,MN上的感应电动势:
最终电容器所带电荷量
设在此过程中MN的平均电流为,MN上受到的平均安培力:
由动量定理,有:
又:
整理的:最终电容器所带电荷量
考点:电磁感应现象的综合应用,电容器,动量定理
相关试卷
这是一份专题14 磁场+电场模型-高考物理磁场常用模型最新模拟题精练,文件包含专题14磁场+电场模型解析版docx、专题14磁场+电场模型原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份专题13 电场+磁场模型-高考物理磁场常用模型最新模拟题精练,文件包含专题13电场+磁场模型解析版docx、专题13电场+磁场模型原卷版docx等2份试卷配套教学资源,其中试卷共92页, 欢迎下载使用。
这是一份专题08 扇形边界磁场模型-高考物理磁场常用模型最新模拟题精练,文件包含专题8扇形边界磁场模型解析版docx、专题8扇形边界磁场模型原卷版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。