还剩42页未读,
继续阅读
所属成套资源:高中数学新教材必修第二册同步课件PPT
成套系列资料,整套一键下载
高中数学新教材必修第二册课件PPT 第7章 §7.2 7.2.1 复数的加、减运算及其几何意义
展开
这是一份高中数学新教材必修第二册课件PPT 第7章 §7.2 7.2.1 复数的加、减运算及其几何意义,共50页。
高中数学新教材同步课件必修第二册 高考政策|高中“新”课程,新在哪里?1、科目变化:外语语种增加,体育与健康必修。第一,必修课程,由国家根据学生全面发展需要设置,所有学生必须全部修习、全部考试。第二,选择性必修课程,由国家根据学生个性发展和升学考试需要设置。第三,选修课程,由学校根据实际情况统筹规划开设,学生自主选择修习。2、课程类别变化,必修课程、选择性必修课程将成为高考考查范围。在毕业总学分不变的情况下,对原必修课程学分进行重构,由必修课程学分、选择性必修课程学分组成,适当增加选修课程学分。3、学时和学分变化,高中生全年假期缩减到11周。4、授课方式变化,选课制度将全面推开。5、考试方式变化,高考统考科目由教育部命题,学业水平合格性、等级性考试由各省命题。7.2.1 复数的加、减运算及其几何意义第七章 §7.2 复数的四则运算1.熟练掌握复数代数形式的加、减运算法则.2.理解复数加减法的几何意义,能够利用“数形结合”的思想解题.学习目标1.上一节我们学习了复数的几何意义,请同学们思考:复数、点、向 量之间的对应关系是什么?2.实数可以进行加减乘除四则运算,且运算的结果仍为一个实数,那 么复数呢?3.多项式的加、减运算法则,合并同类项法则是什么?导语随堂演练课时对点练一、复数的加、减法运算二、复数加、减法的几何意义三、复数模的综合问题内容索引一、复数的加、减法运算1.设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数,则:(1)z1+z2= ;(2)z1-z2= .2.对任意z1,z2,z3∈C,有:(1)z1+z2= ;(2)(z1+z2)+z3= .(a+c)+(b+d)i(a-c)+(b-d)iz2+z1z1+(z2+z3)例1 设m∈R,复数z1= +(m-15)i,z2=-2+m(m-3)i,若z1+z2是虚数,求m的取值范围.∵z1+z2是虚数,∴m2-2m-15≠0,且m+2≠0.∴m≠5,且m≠-3,且m≠-2,m∈R.即m的取值范围为(-∞,-3)∪(-3,-2)∪(-2,5)∪(5,+∞).反思感悟 复数加、减运算的解题思路两个复数相加(减),就是把两个复数的实部相加(减),虚部相加(减).复数的减法是加法的逆运算.当多个复数相加(减)时,可将这些复数的所有实部相加(减),所有虚部相加(减).跟踪训练1 复数(1+2i)+(3-4i)-(-5-3i)对应的点在A.第一象限 B.第二象限C.第三象限 D.第四象限√解析 复数(1+2i)+(3-4i)-(-5-3i)=(1+3+5)+(2-4+3)i=9+i,其对应的点为(9,1),在第一象限.二、复数加、减法的几何意义问题 我们知道,复数与复平面内以原点为起点的向量一一对应,平面向量的坐标运算法则是什么?向量加法的几何意义是什么?z1+z2z1-z2例2 如图所示,平行四边形OABC的顶点O,A,C对应的复数分别为0,3+2i,-2+4i.求:反思感悟 复数与向量的对应关系的两个关注点(1)复数z=a+bi(a,b∈R)是与以原点为起点,Z(a,b)为终点的向量一一对应的.(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数发生改变.(2)若z1=1+2i,z2=2+ai,复数z2-z1所对应的点在第四象限内,则实数a的取值范围是___________.解析 z2-z1=1+(a-2)i,由题意知a-2<0,即a<2.(-∞,2)三、复数模的综合问题例3 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是√解析 设复数z,-i,i,-1-i在复平面内对应的点分别为Z,Z1,Z2,Z3,因为|z+i|+|z-i|=2,|Z1Z2|=2,所以点Z的集合为线段Z1Z2.所以点Z在线段Z1Z2上移动,|ZZ3|min=1,所以|z+i+1|min=1.反思感悟 两个复数差的模的几何意义(1)|z-z0|表示复数z,z0对应的点之间的距离,在应用时,要把绝对值号内变为两复数差的形式.(2)|z-z0|=r表示以z0对应的点为圆心,r为半径的圆.(3)涉及复数模的最值问题以及点的集合所表示的图形问题,均可从两点间距离公式的复数表达形式入手进行分析判断,然后通过几何方法进行求解.跟踪训练3 △ABC的三个顶点所对应的复数分别为z1,z2,z3,复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点P是△ABC的A.外心 B.内心 C.重心 D.垂心√解析 由复数模及复数减法运算的几何意义,结合条件可知复数z对应的点P到△ABC的顶点A,B,C的距离相等,∴P为△ABC的外心.1.知识清单:(1)复数代数形式的加、减运算法则.(2)复数加、减法的几何意义.(3)复平面上两点间的距离公式.2.方法归纳:类比、数形结合.3.常见误区:忽略模的几何意义.课堂小结随堂演练1.计算(1-i)-(2+i)+3i等于A.-1+i B.1-i C.i D.-i√1234解析 原式=1-i-2-i+3i=-1+i.2.已知z1=2+i,z2=1-2i,则复数z=z2-z1对应的点位于A.第一象限 B.第二象限C.第三象限 D.第四象限√1234解析 z=z2-z1=(1-2i)-(2+i)=-1-3i.故z对应的点为(-1,-3),位于第三象限.3.已知复数z1=(a2-2)+(a-4)i,z2=a-(a2-2)i(a∈R),且z1-z2为纯虚数,则a=_____.1234-1解析 ∵z1-z2=(a2-a-2)+(a-4+a2-2)i(a∈R)为纯虚数,4.设平行四边形ABCD在复平面内,A为原点,B,D两点对应的复数分别是3+2i和2-4i,则点C对应的复数是________.5-2i1234所以点C对应的复数是5-2i.课时对点练1.已知z+5-6i=3+4i,则复数z为A.-4+20i B.-2+10iC.-8+20i D.-2+20i√解析 z=3+4i-(5-6i)=(3-5)+(4+6)i=-2+10i.基础巩固123456789101112131415162.(多选)复数(3+mi)-(2+i)对应的点在第一象限内,则实数m可能是A.-1 B.3 C.1 D.2√解析 ∵(3+mi)-(2+i)=3+mi-2-i=1+(m-1)i,∴m-1>0,∴m>1.12345678910111213141516√3.已知复数z对应的向量如图所示,则复数z+1所对应的向量正确的是解析 由图可知z=-2+i,所以z+1=-1+i,则复数z+1所对应的向量的坐标为(-1,1).故选A.12345678910111213141516√4.若z1=2+i,z2=3+ai(a∈R),且z1+z2所对应的点在实轴上,则a的值为A.3 B.2 C.1 D.-1√解析 z1+z2=2+i+3+ai=(2+3)+(1+a)i=5+(1+a)i.∵z1+z2所对应的点在实轴上,∴1+a=0,∴a=-1.12345678910111213141516√解析 设z=a+bi(a,b∈R),123456789101112131415166.若|z-1|=|z+1|,则复数z对应的点在A.实轴上 B.虚轴上 C.第一象限 D.第二象限√解析 ∵|z-1|=|z+1|,∴点Z到(1,0)和(-1,0)的距离相等,即点Z在以(1,0)和(-1,0)为端点的线段的中垂线上,即在虚轴上.123456789101112131415167.已知|z|=4,且z+2i是实数,则复数z=________.解析 因为z+2i是实数,所以可设z=a-2i(a∈R),由|z|=4得a2+4=16,123456789101112131415168.设f(z)=z-3i+|z|,若z1=-2+4i,z2=5-i,则f(z1+z2)=________.123456789101112131415169.计算:12345678910111213141516解 (1+2i)+(i+i2)+|3+4i|=1+2i+i-1+5=5+3i.解 (6-3i)+(3+2i)-(3-4i)-(-2+i)=[6+3-3-(-2)]+[-3+2-(-4)-1]i=8+2i.12345678910111213141516(3)(1+2i)+(i+i2)+|3+4i|;(4)(6-3i)+(3+2i)-(3-4i)-(-2+i).所以△AOB为等腰直角三角形,12345678910111213141516作正方形AOBC,如图所示A.1-3i B.-3-iC.3+5i D.5+3i√12345678910111213141516综合运用解析 ∵点A,B,C对应的复数分别为1+3i,-i,2+i,12345678910111213141516设点D对应的复数为x+yi(x,y∈R),∴点D对应的复数为3+5i.12.复数z1=1+icos θ,z2=sin θ-i,则|z1-z2|的最大值为√解析 |z1-z2|=|(1-sin θ)+(cos θ+1)i|1234567891011121314151613.A,B分别是复数z1,z2在复平面内对应的点,O是坐标原点,若|z1+z2|=|z1-z2|,则△AOB一定是A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形√1234567891011121314151614.设实数x,y,θ满足以下关系:x+yi=3+5cos θ+i(-4+5sin θ),则x2+y2的最大值是_____.解析 因为x+yi=(3+5cos θ)+i(-4+5sin θ),所以x2+y2=(3+5cos θ)2+(-4+5sin θ)2=50+30cos θ-40sin θ=50+50cos(θ+φ),12345678910111213141516100又-1≤cos(θ+φ)≤1,所以(x2+y2)max=50+50=100.拓广探究12345678910111213141516∴z2=-1+2i,(1)求点C,D对应的复数;12345678910111213141516∴点C对应的复数为(2+i)+(2-3i)=4-2i.12345678910111213141516∴点D对应的复数为2+i+3-i=5.(2)求▱ABCD的面积.12345678910111213141516故▱ABCD的面积为7.
高中数学新教材同步课件必修第二册 高考政策|高中“新”课程,新在哪里?1、科目变化:外语语种增加,体育与健康必修。第一,必修课程,由国家根据学生全面发展需要设置,所有学生必须全部修习、全部考试。第二,选择性必修课程,由国家根据学生个性发展和升学考试需要设置。第三,选修课程,由学校根据实际情况统筹规划开设,学生自主选择修习。2、课程类别变化,必修课程、选择性必修课程将成为高考考查范围。在毕业总学分不变的情况下,对原必修课程学分进行重构,由必修课程学分、选择性必修课程学分组成,适当增加选修课程学分。3、学时和学分变化,高中生全年假期缩减到11周。4、授课方式变化,选课制度将全面推开。5、考试方式变化,高考统考科目由教育部命题,学业水平合格性、等级性考试由各省命题。7.2.1 复数的加、减运算及其几何意义第七章 §7.2 复数的四则运算1.熟练掌握复数代数形式的加、减运算法则.2.理解复数加减法的几何意义,能够利用“数形结合”的思想解题.学习目标1.上一节我们学习了复数的几何意义,请同学们思考:复数、点、向 量之间的对应关系是什么?2.实数可以进行加减乘除四则运算,且运算的结果仍为一个实数,那 么复数呢?3.多项式的加、减运算法则,合并同类项法则是什么?导语随堂演练课时对点练一、复数的加、减法运算二、复数加、减法的几何意义三、复数模的综合问题内容索引一、复数的加、减法运算1.设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数,则:(1)z1+z2= ;(2)z1-z2= .2.对任意z1,z2,z3∈C,有:(1)z1+z2= ;(2)(z1+z2)+z3= .(a+c)+(b+d)i(a-c)+(b-d)iz2+z1z1+(z2+z3)例1 设m∈R,复数z1= +(m-15)i,z2=-2+m(m-3)i,若z1+z2是虚数,求m的取值范围.∵z1+z2是虚数,∴m2-2m-15≠0,且m+2≠0.∴m≠5,且m≠-3,且m≠-2,m∈R.即m的取值范围为(-∞,-3)∪(-3,-2)∪(-2,5)∪(5,+∞).反思感悟 复数加、减运算的解题思路两个复数相加(减),就是把两个复数的实部相加(减),虚部相加(减).复数的减法是加法的逆运算.当多个复数相加(减)时,可将这些复数的所有实部相加(减),所有虚部相加(减).跟踪训练1 复数(1+2i)+(3-4i)-(-5-3i)对应的点在A.第一象限 B.第二象限C.第三象限 D.第四象限√解析 复数(1+2i)+(3-4i)-(-5-3i)=(1+3+5)+(2-4+3)i=9+i,其对应的点为(9,1),在第一象限.二、复数加、减法的几何意义问题 我们知道,复数与复平面内以原点为起点的向量一一对应,平面向量的坐标运算法则是什么?向量加法的几何意义是什么?z1+z2z1-z2例2 如图所示,平行四边形OABC的顶点O,A,C对应的复数分别为0,3+2i,-2+4i.求:反思感悟 复数与向量的对应关系的两个关注点(1)复数z=a+bi(a,b∈R)是与以原点为起点,Z(a,b)为终点的向量一一对应的.(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数发生改变.(2)若z1=1+2i,z2=2+ai,复数z2-z1所对应的点在第四象限内,则实数a的取值范围是___________.解析 z2-z1=1+(a-2)i,由题意知a-2<0,即a<2.(-∞,2)三、复数模的综合问题例3 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是√解析 设复数z,-i,i,-1-i在复平面内对应的点分别为Z,Z1,Z2,Z3,因为|z+i|+|z-i|=2,|Z1Z2|=2,所以点Z的集合为线段Z1Z2.所以点Z在线段Z1Z2上移动,|ZZ3|min=1,所以|z+i+1|min=1.反思感悟 两个复数差的模的几何意义(1)|z-z0|表示复数z,z0对应的点之间的距离,在应用时,要把绝对值号内变为两复数差的形式.(2)|z-z0|=r表示以z0对应的点为圆心,r为半径的圆.(3)涉及复数模的最值问题以及点的集合所表示的图形问题,均可从两点间距离公式的复数表达形式入手进行分析判断,然后通过几何方法进行求解.跟踪训练3 △ABC的三个顶点所对应的复数分别为z1,z2,z3,复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点P是△ABC的A.外心 B.内心 C.重心 D.垂心√解析 由复数模及复数减法运算的几何意义,结合条件可知复数z对应的点P到△ABC的顶点A,B,C的距离相等,∴P为△ABC的外心.1.知识清单:(1)复数代数形式的加、减运算法则.(2)复数加、减法的几何意义.(3)复平面上两点间的距离公式.2.方法归纳:类比、数形结合.3.常见误区:忽略模的几何意义.课堂小结随堂演练1.计算(1-i)-(2+i)+3i等于A.-1+i B.1-i C.i D.-i√1234解析 原式=1-i-2-i+3i=-1+i.2.已知z1=2+i,z2=1-2i,则复数z=z2-z1对应的点位于A.第一象限 B.第二象限C.第三象限 D.第四象限√1234解析 z=z2-z1=(1-2i)-(2+i)=-1-3i.故z对应的点为(-1,-3),位于第三象限.3.已知复数z1=(a2-2)+(a-4)i,z2=a-(a2-2)i(a∈R),且z1-z2为纯虚数,则a=_____.1234-1解析 ∵z1-z2=(a2-a-2)+(a-4+a2-2)i(a∈R)为纯虚数,4.设平行四边形ABCD在复平面内,A为原点,B,D两点对应的复数分别是3+2i和2-4i,则点C对应的复数是________.5-2i1234所以点C对应的复数是5-2i.课时对点练1.已知z+5-6i=3+4i,则复数z为A.-4+20i B.-2+10iC.-8+20i D.-2+20i√解析 z=3+4i-(5-6i)=(3-5)+(4+6)i=-2+10i.基础巩固123456789101112131415162.(多选)复数(3+mi)-(2+i)对应的点在第一象限内,则实数m可能是A.-1 B.3 C.1 D.2√解析 ∵(3+mi)-(2+i)=3+mi-2-i=1+(m-1)i,∴m-1>0,∴m>1.12345678910111213141516√3.已知复数z对应的向量如图所示,则复数z+1所对应的向量正确的是解析 由图可知z=-2+i,所以z+1=-1+i,则复数z+1所对应的向量的坐标为(-1,1).故选A.12345678910111213141516√4.若z1=2+i,z2=3+ai(a∈R),且z1+z2所对应的点在实轴上,则a的值为A.3 B.2 C.1 D.-1√解析 z1+z2=2+i+3+ai=(2+3)+(1+a)i=5+(1+a)i.∵z1+z2所对应的点在实轴上,∴1+a=0,∴a=-1.12345678910111213141516√解析 设z=a+bi(a,b∈R),123456789101112131415166.若|z-1|=|z+1|,则复数z对应的点在A.实轴上 B.虚轴上 C.第一象限 D.第二象限√解析 ∵|z-1|=|z+1|,∴点Z到(1,0)和(-1,0)的距离相等,即点Z在以(1,0)和(-1,0)为端点的线段的中垂线上,即在虚轴上.123456789101112131415167.已知|z|=4,且z+2i是实数,则复数z=________.解析 因为z+2i是实数,所以可设z=a-2i(a∈R),由|z|=4得a2+4=16,123456789101112131415168.设f(z)=z-3i+|z|,若z1=-2+4i,z2=5-i,则f(z1+z2)=________.123456789101112131415169.计算:12345678910111213141516解 (1+2i)+(i+i2)+|3+4i|=1+2i+i-1+5=5+3i.解 (6-3i)+(3+2i)-(3-4i)-(-2+i)=[6+3-3-(-2)]+[-3+2-(-4)-1]i=8+2i.12345678910111213141516(3)(1+2i)+(i+i2)+|3+4i|;(4)(6-3i)+(3+2i)-(3-4i)-(-2+i).所以△AOB为等腰直角三角形,12345678910111213141516作正方形AOBC,如图所示A.1-3i B.-3-iC.3+5i D.5+3i√12345678910111213141516综合运用解析 ∵点A,B,C对应的复数分别为1+3i,-i,2+i,12345678910111213141516设点D对应的复数为x+yi(x,y∈R),∴点D对应的复数为3+5i.12.复数z1=1+icos θ,z2=sin θ-i,则|z1-z2|的最大值为√解析 |z1-z2|=|(1-sin θ)+(cos θ+1)i|1234567891011121314151613.A,B分别是复数z1,z2在复平面内对应的点,O是坐标原点,若|z1+z2|=|z1-z2|,则△AOB一定是A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形√1234567891011121314151614.设实数x,y,θ满足以下关系:x+yi=3+5cos θ+i(-4+5sin θ),则x2+y2的最大值是_____.解析 因为x+yi=(3+5cos θ)+i(-4+5sin θ),所以x2+y2=(3+5cos θ)2+(-4+5sin θ)2=50+30cos θ-40sin θ=50+50cos(θ+φ),12345678910111213141516100又-1≤cos(θ+φ)≤1,所以(x2+y2)max=50+50=100.拓广探究12345678910111213141516∴z2=-1+2i,(1)求点C,D对应的复数;12345678910111213141516∴点C对应的复数为(2+i)+(2-3i)=4-2i.12345678910111213141516∴点D对应的复数为2+i+3-i=5.(2)求▱ABCD的面积.12345678910111213141516故▱ABCD的面积为7.
相关资料
更多