综合复习与测试(9)(第五六章)(培优篇)(专项练习)-八年级数学上册基础知识专项讲练(苏科版)
展开综合复习与测试(9)(第五六章)
(培优篇)(专项练习)
一、 单选题(本大题共10小题,每小题3分,共30分)
1.函数中,自变量x的取值范围( )
A.x>﹣4 B.x>1 C.x≥﹣4 D.x≥1
2.若点到两坐标轴的距离相等,则点的坐标( )
A. B. C.或 D.或
3.已知点P(x,y)到x轴的距离为2,到y轴的距离为3,且x+y>0,xy<0,则点P的坐标为( )
A.(﹣2,3) B.(2,3) C.(3,﹣2) D.(3,2)
4.已知点A(3a,2b)在x轴上方,在y轴左侧,则点A到x轴、y的距离分别为( )
A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a
5.把直线向上平移个单位后,与直线的交点在第二象限,则的取值范围是( )
A. B. C. D.
6.已知点A(-1,-2),B(3,4),将线段AB平移得到线段CD.若点A的对应点C在x轴上,点B的对应点D在y轴上,则点C的坐标是( ).
A.(-4,0) B.(1,-5) C.(2,-4) D.(-3,1)
7.如图,在平面直角坐标系中,点在轴上,点的坐标为.将先绕点顺时针旋转90°,再向右平移3个单位长度,则变换后点的对应点坐标是( )
A. B. C.(3,2) D.(2,2)
8.直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能的值为( )
A.﹣3 B.﹣4 C.3 D.4
9.如图,在中,点是边上一点,点从点出发沿向点运动,到达点时停止.若,图中阴影部分面积为,则图中可以近似地刻画出与之间关系的是( )
A.B. C. D.
10.如图,在平面直角坐标系中,点,,在直线上,点,,在轴上,,,都是等腰直角三角形,若已知点,则点的纵坐标是( )
A. B. C. D.
二、 填空题(本大题共8小题,每小题4分,共32分)
11.若一次函数的图象不经过第二象限,则a的取值范围为________.
12.在平面直角坐标系xOy中,A(4,0),B(0,3),C(m,7),三角形ABC的面积为14,则m的值为_____.
13.在平面直角坐标系中,点A(3,0),B(0,6),作△BOC,使△BOC与△ABO全等,则点C坐标为 _______________.
14.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.
15.如图,点的坐标为,点的坐标为,分别以,为直角边在第三、第四象限作等腰,等腰,连接交轴于点,点的坐标是______.
16.如图,已知点在直线上,和的图像交于点B,且点B的横坐标为8,将直线绕点A逆时针旋转45°与直线相较于点Q,则点Q的坐标为______.
17.如图,在平面直角坐标系中,一次函数分别交x轴、y轴于A、B两点,若C为x轴上的一动点,则2BC+AC的最小值为__________.
18.如图是某种电子理疗设备工作原理的示意图,其开始工作时的温度是20℃,然后按照一次函数关系一直增加到70℃,这样有利于打通病灶部位的血液循环,在此温度下再沿反比例函数关系缓慢下降至35℃,然后在此基础上又沿着一次函数关系一直将温度升至70℃,再在此温度下沿着反比例函数关系缓慢下降至35℃,如此循环下去.
(1)的值为________;
(2)如果在分钟内温度大于或等于50℃时,治疗效果最好,则维持这个温度范围的持续时间为________分钟.
三、解答题(本大题共6小题,共58分)
19.(8分)如图1,在中,,,直线ED经过点C,过点A作于点D,过点B作于点E,易证明,我们将这个模型称为“一线三直角”.接下来我们就利用这个模型来解决一些问题:
(1) 如图2,将一块等腰直角三角板ACB放置在平面直角坐标系中,,,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,点A的坐标为,点C的坐标为,则点B的坐标为______.
(2) 如图3,在平面直角坐标系中,,,AB与y轴交于点D,点C的坐标为,点A的坐标为,求点B的坐标.
20.(8分)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:
(1) 快车的速度为 km/h,C点的坐标为 .
(2) 慢车出发多少小时候,两车相距200km.
21.(10分)某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:
进货批次
甲种水果质量(单位:千克)
乙种水果质量(单位:千克)
总费用(单位:元)
第一次
60
40
1520
第二次
30
50
1360
(1) 求甲、乙两种水果的进价;
(2) 销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.
22.(10分)如图,在平面直角坐标系中,过点的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴y轴交于点D、C.
(1) 若,求直线AB的函数关系式;
(2) 连接BD,若 的面积是5,求点B的运动路径长.
23.(10分)如图,A点坐标为,直线经过点和点,交轴于点.
(1) 求直线的函数表达式.
(2) 点在直线上,且满足,求点的坐标.
(3) 过点作一条直线,使得直线沿折叠之后正好经过点A,求直线的解析式.
24.(12分)定义:对于一次函数 ,我们称函数为函数的“组合函数”.
(1) 若m=3,n=1,试判断函数是否为函数的“组合函数”,并说明理由;
(2) 设函数与的图像相交于点P.
①若,点P在函数的“组合函数”图像的上方,求p的取值范围;
②若p≠1,函数的“组合函数”图像经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图像与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.
参考答案
1.B
解:根据二次根式有意义的条件和分式有意义的条件,即x+4≥0,x-1>0,即x>1.
故选B.
2.D
【分析】根据点到两坐标轴的距离相等列出绝对值方程,然后求解即可.
解:点到两坐标轴的距离相等,
,
或,
解得或,
点的坐标为或;
故选:.
【点拨】本题考查了点的坐标的表示,依据题意列出绝对值方程是解题的关键,难点在于绝对值方程的求解.
3.C
【分析】由点P(x,y)到X轴距离为2,到Y轴距离为3,可得x,y的可能的值,由x+y>0,xy<0,可得两数异号,且正数的绝对值较大;根据前面得到的结论即可判断点P的坐标.
解:∵点P(x,y)到x轴距离为2,到y轴距离为3,
∴|x|=3,|y|=2,
∴x=±3,y=±2;
∵x+y>0,xy<0,
∴x=3,y=﹣2,
∴P的坐标为(3,﹣2),
故选:C.
【点拨】此题考查直角坐标系中点到坐标轴的距离与坐标的关系,有理数加法乘法法则,正确掌握有理数的加法乘法法则是解题的关键.
4.C
【分析】应先判断出点A的横纵坐标的符号,进而判断点A到x轴、y轴的距离.
解:∵点A(3a,2b)在x轴上方,
∴点A的纵坐标大于0,得到2b>0,
∴点A到x轴的距离是2b;
∵点A(3a,2b)在y轴的左边,
∴点A的横坐标小于0,即3a<0,
∴点A到y轴的距离是-3a;
故答案为C.
【点拨】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.
5.A
【分析】根据平移特征:向上平移个单位后可得:,再根据与直线的交点,组成方程组,解关于x,y的方程,得到x,y关于m的代数式,二象项的点横坐标小于0.纵坐标大于0,组成不等式组,即可得到答案.
解:直线向上平移个单位后可得:,
联立两直线解析式得:,
解得:,
即交点坐标为,,
交点在第二象限,
,
解得:.
故选:.
【点拨】本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于0、纵坐标大于0.
6.A
【分析】根据点A、B平移后的对应点的位置得到平移的规律,由此得到答案.
解:∵点A(-1,-2)平移后的对应点C在x轴上,
∴点A向上平移2个单位,
∵点B(3,4)的对应点D在y轴上,
∴点B向左平移3个单位,
∴线段AB向左平移3个单位,再向上平移2个单位后得到对应点C、D,
∴点C的坐标是(-4,0).
故选:A.
【点拨】此题考查直角坐标系中点的平移规律:左减右加,上加下减,熟记规律并运用解题是关键.
7.D
【分析】先求出A点绕点顺时针旋转90°后所得到的的坐标,再求出向右平移3个单位长度后得到的坐标,即为变换后点的对应点坐标.
解:将先绕点顺时针旋转90°,得到点坐标为(-1,2),再向右平移3个单位长度,则点的纵坐标不变,横坐标加上3个单位长度,故变换后点的对应点坐标是(2,2).
【点拨】本题考察点的坐标的变换及平移.
8.B
【分析】根据函数的有交点,构造二元一次方程组,求出x、y的值,然后根据点在第四象限列不等式组求出a的取值范围即可.
解:根据题意可得
解得
因为交点在第四象限,
∴
解得a<-3
故选B.
【点拨】此题主要考查了一次函数图像,关键是根据两个一次函数的交点求出关于a的x、y的关系式.
9.C
【分析】如图:作的高,则为定值.根据三角形的面积公式得出;可判断得到是的正比例函数,最后根据正比例函数的图像与性质即可求解.
解:如图,作的高,则为定值.
图中阴影部分的面积,即,
为定值,
为定值,
是的正比例函数.
故答案是C.
【点拨】本题主要考查了动点问题的函数图像、三角形的面积、正比例函数的定义等知识点,求出与的函数关系式是解题的关键.
10.D
【分析】作x轴, x轴, x轴,设纵坐标为m,再根据等腰直角三角形的性质,将坐标表示为,代入直线解析式算出m,再用同样的方法设,代入解析式求出n.
解:如图,作x轴, x轴, x轴,
把代入,求出,则直线解析式是,
已知,根据等腰直角三角形的性质,得到,
设纵坐标为m,,,得,代入直线解析式,得,解得,
设纵坐标为n,,,得,代入直线解析式,得,解得.
故选:D.
【点拨】本题考查一次函数的图象和几何综合,解题的关键是抓住等腰直角三角形的性质去设点坐标,再代入解析式列式求解.
11.
【分析】先判断一次函数经过第一、三、四象限或第一、三象限及原点,再根据一次函数的性质得到a+2>0且a-2≤0,然后求出两个不等式的公共部分即可.
解:因为一次函数的图象不经过第二象限,所以经过第一、三、四象限或第一、三象限及原点,所以且,所以.
【点拨】本题考查了一次函数与系数的关系:对于一次函数y=kx+b,它与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.
12.m=4或
【分析】点C在直线y=7上,根据点C的不同位置,结合图形,用含m的代数式表示出三角形ABC的面积,得到关于m的方程,解方程求解即可.
解:如图1,
当点C在y轴右侧时,
∴,
∴,
解得:m=4;
当点C在y轴左侧,线段ED上(不含E点)时,此时m<0,
∴
∴
解得:m=4;
∵m<0,
∴不合题意.
当点C在E点左侧时,m<0
∴
∴,
解得:m=;
综上:m=4或.
故答案为:m=4或.
【点拨】本题主要考查平面直角坐标系下的面积问题,做这类题时,一定要把图画出来,利用数形结合的思想解决,对于多种情况的问题,还要注意分类讨论.
13.或或
【分析】根据直角坐标系的性质,得,,;再根据全等三角形性质,分三种情况分析,即可得到答案.
解:根据题意,得,,
使△BOC与△ABO全等,分三种情况分析:
当时,如下图
∵△BOC与△ABO全等,且
∴
∴
当时,如下图
∵△BOC与△ABO全等,且
∴
∴
当时,如下图
∵△BOC与△ABO全等,且
∴
∴
故答案为:或或.
【点拨】本题考查了直角坐标系、全等三角形的知识;解题的关键是熟练掌握直角坐标系、坐标、全等三角形的性质,从而完成求解.
14.
【分析】设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.
解:
设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C
∴OB=3
∵经过原点的直线将图形分成面积相等的两部分
∴直线上方面积分是4
∴三角形ABO的面积是5
∴
∴
∴直线经过点
设直线l为
则
∴直线的函数关系式为
【点拨】本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.
15.
【分析】作轴于,求出,证,得BN=AO,再由,证,推出=2,由点的坐标为即可得出点的坐标为.
解:如图,作轴于,
,
,,
,
在和中,
,
,OA=BN
,
在和中,
,
,
,
又因为点的坐标为,
,
,
又∵点的坐标为,
∴点的坐标为.
故答案为:.
【点拨】本题考查了全等三角形的性质和判定,坐标与图形性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,有一定的难度,注意:全等三角形的判定定理有,,,,全等三角形的对应角相等,对应边相等.
16.(,)
【分析】将点A的坐标代入,即可求出直线的表达式,令x=8,即可求出点B的坐标,将点B的坐标代入直线,即可求出直线的表达式,将直线绕点A逆时针旋转45°与直线相较于点Q,过点Q作QE⊥AQ交AB于点E,过点Q作,过点A作AF⊥FG于点F,过点E作EG⊥FG于点G,根据全等三角形对应边相等,即可将点E的坐标表示出来,最后将点E的坐标代入的函数表达式,即可求解.
解:把点代入直线得:-5=2×2+b,解得:b=-9,
∴直线的表达式为:y=2x-9,
当x=8时,y=2×8-9=7,
∴B(8,7),
把点B(8,7)代入直线得:7=8k-1,解得:k=1,
∴直线的表达式为:y=x-1,
将直线绕点A逆时针旋转45°与直线相较于点Q,过点Q作QE⊥AQ交AB于点E,过点Q作,过点A作AF⊥FG于点F,过点E作EG⊥FG于点G,
∵∠G=∠F=∠AQE=90°,
∴∠EQG+∠AQF=90°,∠∠EQG+QEG=90°,
∴∠AQF= QEG,
∵∠EAQ=45°,∠AQE=90°,
∴△AQE为等腰直角三角形,则AQ=QE,
在△AQF和△QEG中,
∠AQF= QEG,∠G=∠F,AQ=QE,
∴△AQF≌△QEG
∴AF=QG,FQ=EG,
设点Q(a,b),
∵点Q在直线上,
∴y=x-1,即点Q(a,a-1),
∵A(2,-5),
∴AF=QG=2-a,FQ=EG=(a-1)-(-5)=a+4,
∴点E的横坐标为:a+(a+4)=2a+4,
点E的纵坐标为:(a-1)+(2-a)=1,
则E(2a+4,1)
将点E的坐标代入直线的表达式为:1=2(2a+4)-9,解得:a=,
∴a-1=-1=,
∴Q(,)
【点拨】本题考查了用待定系数法求函数的表达式,等腰直角三角形的性质,全等三角形的性质和判定,熟练掌握相关内容是解题的关键.
17.6
【分析】先求出点A,点B坐标,由勾股定理可求AB的长,作点B关于OA的对称点,可证是等边三角形,由直角三角形的性质可得CH=AC,则,即当点,点C,点H三点共线时,有最小值,即2BC+AC有最小值,由直角三角形的性质可求解.
解:∵一次函数分别交x轴、y轴于A、B两点,
∴点A(3,0),点,
∴AO=3,,
∴,
作点B关于OA的对称点,连接 ,,过点C作CH⊥AB于H,如图所示:
∴,
∴,
∴,
∴是等边三角形,
∵,
∴,
∵CH⊥AB,
∴,
∴,
∴当点,点C,点H三点共线时,有最小值,即2BC+AC有最小值,
此时,,是等边三角形,
∴,,
∴,
∴2BC+AC的最小值为6.
故答案为:6.
【点拨】本题是胡不归问题,考查了一次函数的性质,等边三角形的判定和性质,直角三角形的性质,确定点C的位置是解题的关键.
18. 50; 20.
【分析】先利用待定系数法求得第一次循环中反比例函数的解析式,令时即可求解;再利用待定系数法求得第一次循环中一次函数的解析式,分别求得时对应的的值求差即可.
解:设第一次循环过程中反比例函数的解析式为 ,过点(25,70),
∴,
∴,
当时,则,解得,
设第一次循环过程中一次函数的解析式为,
由题意得 ,解得 ,
∴一次函数的解析式为,
∴当℃时,则,解得;
当℃时,则,解得,
∴分钟内温度大于或等于50℃时,治疗效果最好,则维持这个温度范围的持续时间为
(分钟),
故答案为:(1)50;(2)20.
【点拨】本题考查了待定系数法求函数的解析式以及求函数值,理解题意是解题的关键.
19.(1)(2)点B坐标为
【分析】(1)过点B作BD⊥x轴于点D,由“一线三直角”得,则,,即可求解.
(2)过点B作轴于点E,证,得,,则,即可求解.
解:(1)过点B作轴于点D,则,如图2所示:
∵点A的坐标为,点C的坐标为,
∴,,
∵是等腰直角三角形,
∴,,
由“一线三直角”,得
∴,,
∴,
∴点B的坐标为.
故答案为:.
(2)如图3,过点B作轴于点E,
∵点C坐标为,点A的坐标为,
∴,,
∵,
∴,
∵,
∴,
∴,,
∴,
∴点B坐标为.
【点拨】此题考查了全等三角形的判定与性质、坐标与图形的性质等知识,解题的关键是正确作出辅助线构造全等三角形.
20.(1)100,(8,480);(2)1.75h和4.875h.
【分析】(1)由图像可知,甲乙两地的距离为480km, 0-3小时快车和慢车一起行驶了3小时,3-4小时快车出现故障停止前行、仅有慢车行驶,进而求出慢车速度,然后再求出快车的速度;A、B段为快车已维修好,两车共同行驶且快车在B点到站,BC段仅为慢车行驶;则可求出B点坐标,进而求出C点的横坐标即可解答;
(2)分快车出现故障前和故障后两种情况解答即可.
解:(1)由图像可知,甲乙两地的距离为480km
在0-3小时快车和慢车一起行驶了3小时,3-4小时快车出现故障停止前行、仅有慢车行驶
则慢车速度为=60km/h
设快车速度为v,则有:(v+60)×3=480,解得v=100km/h
∴B点的横坐标为+1=5.8,从坐标为60+(60+100)×(5.8-4)=348,即B(5.8,348)
∴慢车行驶时间为h,
∴C点的横坐标为8
∴C点的坐标为(8,480);
(2)在快车出现故障前,两车相距200km 所用时间为:(480-200)÷(100+60)=1.75h;
在快车出现故障后,慢车1小时行驶了60km,然后两车共同行驶了200-60=140km
共同行驶时间为140÷(100+60)=0.875h
∴两车相距200km 所用时间为4+0.875=4.875h.
答:两车相距200km 所用时间为1.75h和4.875h.
【点拨】本题考查了从函数图象中获取信息和行程问题,从函数图象中获取有用的信息成为解答本题的关键.
21.(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元(2)正整数m的最大值为22
【分析】(1)设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元,根据总费用列方程组即可;
(2)设水果店第三次购进x千克甲种水果,根据题意先求出x的取值范围,再表示出总利润w与x的关系式,根据一次函数的性质判断即可.
解:(1)设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元.
根据题意,得
解方程组,得
答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.
(2)设水果店第三次购进x千克甲种水果,则购进千克乙种水果,
根据题意,得.
解这个不等式,得.
设获得的利润为w元,
根据题意,得
.
∵,
∴w随x的增大而减小.
∴当时,w的最大值为.
根据题意,得.
解这个不等式,得.
∴正整数m的最大值为22.
【点拨】本题考查一次函数的应用、二元一次方程组的应用、解一元一次不等式,解答本题的关键是明确题意,找出等量关系,列出相应的二元一次方程,写出相应的函数解析式,利用一次函数的性质求最值.
22.(1)y=2x+4(2)
【分析】(1)根据图像求出B的坐标,然后根据待定系数法求出直线AB的解析式;
(2)设OB=m,然后根据△ABD的面积可得到方程,解方程可求出m的值,由此可根据旋转的意义求出B的路径的长.
解:(1)因为,且点B在y轴正半轴上,
所以点B坐标为.
设直线AB的函数关系式为,
将点,的坐标分别代入
得,
解得,
所以直线AB的函数关系式为.
(2)如图,
设,
因为 的面积是5,
所以.
所以,即.
解得或 (舍去).
因为 ,
所以点B的运动路径长为.
23.(1)(2)或;(3)或
【分析】(1)设直线的函数表达式为,利用待定系数法将,代入求解即可;
(2)点的坐标为,由得,求出m值即可;
(3)由直线经过定点得直线的表达式为,点A关于直线的对称点在直线上,得的中点在直线上,由对称的性质知,按照这个思路列等式即可求解.
(1)解:设直线的函数表达式为,
将,代入,
得,
解得,
∴直线的函数表达式为;
(2)解:由(1)知直线的函数表达式为,
令得,
解得,
∴点的坐标为,
∵A点坐标为,
∴.
∵点在直线上,
∴设点的坐标为,
∵,
∴,
即,
∴,
解得或,
当时,,
当时,,
∴点的坐标为或;
(3)解:由题意,直线经过定点,
∴直线的表达式为,即.
∵直线沿折叠之后正好经过点A,
∴点A关于直线的对称点在直线上,
设的坐标为,
∴的中点坐标为,且该点在直线上,
∴,
整理得,.
由对称的性质知,
∴,
整理得,
解得或,
当时,
,直线的表达式为;
当时,
,直线的表达式为,
∴直线的解析式为或.
【点拨】本题考查求一次函数解析式,平面直角坐标系内求三角形的面积,对称的性质,两点间距离公式等,熟练掌握对称的性质是解题的关键.
24.(1)是函数的“组合函数”(2)①;②存在,见详解
【分析】(1)把m=3,n=1代入组合函数中,化简后进行判断即可;
(2)①先求出点P的坐标和“组合函数”,把代入“组合函数”,再根据题意,列不等式求解即可;②将点P代入“组合函数”,整理得m+n=1,把n=1-m代入“组合函数”,消去n,把y=0代入解一元一次方程即可求解.
(1)解:是函数的“组合函数”,
理由:由函数的“组合函数”为:,
把m=3,n=1代入上式,得,
函数是函数的“组合函数”;
(2)解:①解方程组得,
函数与的图像相交于点P,
点P的坐标为,
的“组合函数”为, ,
,点P在函数的“组合函数”图像的上方,
,整理,得,
,,
p的取值范围为;
②存在,理由如下:
函数的“组合函数”图像经过点P.
将点P的坐标代入“组合函数”,得
,
,
,
,,
将代入=,
把y=0代入,得
解得:,
设,则,
,
对于不等于1的任意实数p,存在“组合函数”图像与x轴交点Q的位置不变.
【点拨】本题考查了一次函数的图像和性质,一次函数与不等式的关系,一次函数与一元一次方程,正确理解“组合函数”的定义是解本题的关键.
综合复习与测试(8)(第五六章)(巩固篇)(专项练习)-八年级数学上册基础知识专项讲练(苏科版): 这是一份综合复习与测试(8)(第五六章)(巩固篇)(专项练习)-八年级数学上册基础知识专项讲练(苏科版),共28页。试卷主要包含了已知点P,若函数y=等内容,欢迎下载使用。
综合复习与测试(7)(第五六章)(基础篇)(专项练习)-八年级数学上册基础知识专项讲练(苏科版): 这是一份综合复习与测试(7)(第五六章)(基础篇)(专项练习)-八年级数学上册基础知识专项讲练(苏科版),共26页。试卷主要包含了直线不经过,对于一次函数,下列叙述正确的是等内容,欢迎下载使用。
综合复习与测试(6)(第三四章)(培优篇)(专项练习)-八年级数学上册基础知识专项讲练(苏科版): 这是一份综合复习与测试(6)(第三四章)(培优篇)(专项练习)-八年级数学上册基础知识专项讲练(苏科版),共38页。试卷主要包含了 的立方根是,已知实数满足,那么的值是,如图, 中,,则 的值为,用计算器探索等内容,欢迎下载使用。