![专题1.9 一元二次方程根的判别式及根与系数关系-(学案知识讲解)(苏科版)第1页](http://www.enxinlong.com/img-preview/2/3/14126919/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题1.9 一元二次方程根的判别式及根与系数关系-(学案知识讲解)(苏科版)第2页](http://www.enxinlong.com/img-preview/2/3/14126919/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题1.9 一元二次方程根的判别式及根与系数关系-(学案知识讲解)(苏科版)第3页](http://www.enxinlong.com/img-preview/2/3/14126919/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2020-2021学年九年级数学上册基础知识专项讲练(苏科38讲)
初中数学第1章 一元二次方程1.1 一元二次方程导学案
展开
这是一份初中数学第1章 一元二次方程1.1 一元二次方程导学案,共7页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,总结升华,答案与解析等内容,欢迎下载使用。
专题1.9 一元二次方程根的判别式及根与系数关系(知识讲解)【学习目标】1. 会用一元二次方程根的判别式判别方程根的情况,由方程根的情况能确定方程中待定系数的取值范围;2. 掌握一元二次方程的根与系数的关系以及在各类问题中的运用. 【要点梳理】知识点一、一元二次方程根的判别式1.一元二次方程根的判别式 一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.要点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定的值;③计算的值;④根据的符号判定方程根的情况.2. 一元二次方程根的判别式的逆用 在方程中,(1)方程有两个不相等的实数根﹥0;(2)方程有两个相等的实数根=0;(3)方程没有实数根﹤0.要点诠释:(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件;(2)若一元二次方程有两个实数根则 ≥0.知识点二、一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,.注意它的使用条件为a≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 2.一元二次方程的根与系数的关系的应用 (1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数; (3)不解方程,可以利用根与系数的关系求关于x1、x2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①;②;③;④;⑤;⑥;⑦;⑧;⑨;⑩. (4)已知方程的两根,求作一个一元二次方程;以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号.设一元二次方程的两根为、,则①当△≥0且时,两根同号.当△≥0且,时,两根同为正数;当△≥0且,时,两根同为负数.②当△>0且时,两根异号. 当△>0且,时,两根异号且正根的绝对值较大;当△>0且,时,两根异号且负根的绝对值较大.要点诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根,则必有一根(,为有理数).【典型例题】类型一、一元二次方程根的判别式的应用1. 下列一元二次方程没有实数根的是( )A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=0【思路点拨】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断.【答案】B.【解析】解:A、△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误;B、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;C、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;D、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误;故选:B.【总结升华】本题主要考查一元二次方程根的情况,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.举一反三: 【变式】不解方程,判别方程根的情况: . 【答案】无实根. 2. 关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是 .【思路点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0.【答案】k<2且k≠1; 【解析】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,∴k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,解得:k<2且k≠1.故答案为:k<2且k≠1.【总结升华】不能忽略二次项系数不为0这一条件.举一反三: 【变式】m为任意实数,试说明关于x的方程x2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根.【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m2+10m+37=(m+5)2+12>0, ∴关于x的方程x2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 类型二、一元二次方程的根与系数的关系的应用3.已知方程的一个根是2,求另一个根及k的值.【思路点拨】 根据方程解的意义,将x=2代入原方程,可求k的值,再由根与系数的关系求出方程的另外一个根.【答案与解析】方法一:设方程另外一个根为x1,则由一元二次方程根与系数的关系,得,,从而解得:,k=-7. 方法二:将x=2代入方程,得5×22+2k-6=0,从而k=-7.设另外一根为x1,则由一元二次方程根与系数的关系,得,从而,故方程的另一根为,k的值为-7.【总结升华】根据一元二次方程根与系数的关系,易得另一根及k的值. 举一反三:【变式】已知方程的一个根是3,求它的另一根及的值.
【答案】另一根为-1;的值为-3. 4. 已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.解:(1)△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.【总结升华】本题考查的是一元二次方程根的判别式和求根公式的应用,此外要掌握整数根的意义及正确求解适合条件的整数根.
相关学案
这是一份初中数学人教版九年级上册21.1 一元二次方程学案,共6页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
这是一份人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程学案设计,共6页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,总结升华,答案与解析等内容,欢迎下载使用。
这是一份数学九年级上册2.1 圆学案设计,共7页。学案主要包含了学习目标,知识回顾,答案与解析,总结升华,要点梳理,典型例题等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)