所属成套资源:2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】
- 30三角形的外角的定义及性质(基础题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 试卷 1 次下载
- 24与角平分线有关的三角形内角和问题(提升题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 试卷 1 次下载
- 33多边形内角和问题(基础题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 试卷 0 次下载
- 32三角形的外角的定义及性质(压轴题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 试卷 0 次下载
- 26三角形折叠中的角度问题-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 试卷 0 次下载
25与角平分线有关的三角形内角和问题(压轴题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】
展开这是一份25与角平分线有关的三角形内角和问题(压轴题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】,共36页。试卷主要包含了解答题等内容,欢迎下载使用。
25与角平分线有关的三角形内角和问题(压轴题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】
一、解答题
1.(2021春·江苏无锡·七年级宜兴市实验中学校考期中)(1)已知AB∥CD,E是AB、CD间一点,如图1,给它取名“M型”;有结论:;如图2,给它取名“铅笔头型”,有结论:;
①在图3 “M型”中,AF、CF分别平分∠A、∠C,则∠F与∠E的关系是 ;
②在图4 “铅笔头型”中,延长EC到G,AF、CF分别平分∠A、∠DCG,则∠F与∠E的关系是 ;
(2)若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD.
①如图5,请探究∠1、∠2、∠F之间的数量关系?并说明理由;
②如图6,∠1比∠2的3倍多18°,∠2是∠F的,求∠F的度数.
2.(2021春·江苏无锡·七年级统考期中)在中,,是的角平分线,是射线上任意一点(不与、、三点重合),过点作,垂足为,交直线于.
(1)如图①,当点在线段上时,
(i)说明.
(ii)作的角平分线交直线于点,则与有怎样的位置关系?画出图形并说明理由.
(2)当点在的延长线上时,作的角平分线交直线于点,此时与的位置关系为___________.
3.(2021春·江苏连云港·七年级统考期中)我们将内角互为对顶角的两个三角形称为“对顶三角形.例如,在图1中,的内角与的内角互为对顶角,则与为对顶三角形,根据三角形内角和定理知“对顶三角形”有如下性质:.
(1)【性质理解】
如图2,在“对顶三角形”与中,,,求证:;
(2)【性质应用】
如图3,在中,点D、E分别是边、上的点,,若比大20°,求的度数;
(3)【拓展提高】
如图4,已知,是的角平分线,且和的平分线和相交于点P,设,求的度数(用表示).
4.(2022春·江苏扬州·七年级校联考期中),点,分别在、上运动不与点重合.
(1)如图①,、分别是和的平分线,随着点、点的运动,当AO=BO时 ;
(2)如图②,若是的平分线,的反向延长线与的平分线交于点,随着点,的运动的大小会变吗?如果不会,求的度数;如果会,请说明理由;
(3)如图③,延长至,延长至,已知,的平分线与的平分线及其延长线相交于点、,在中,如果有一个角是另一个角的倍,求的度数.
5.(2022春·江苏无锡·七年级校联考期中)如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.
(1)∠E的度数为__________°;
(2)如图2,若再分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F,试求∠AFC的度数;
(3)在(2)的条件下,如图3,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若
∠FAH、∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH(m、n为常数),请直接写出m、n的值:m=__________,n=__________.
6.(2020春·江苏泰州·七年级统考期中)(1)思考探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度数.
(2)类比探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠P=n°.求∠A的度数(用含n的式子表示).
(3)拓展迁移:已知,在四边形ABCD中,四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交于点P,∠P=n°,请画出图形;并探究出∠A+∠D的度数(用含n的式子表示).
7.(2020春·江苏苏州·七年级统考期中)好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在中,点是、的平分线的交点,点是、平分线的交点,的延长线交于点.
(1)若,则 °;
(2)若 (),则当等于多少度(用含的代数式表示)时,,并说明理由;
(3)若,求的度数.
8.(2020春·江苏徐州·七年级统考期中)如图,△ABC中,AE是△ABC的角平分线,AD是BC边上的高.
(1)若∠B=35°,∠C=75°,求∠DAE的度数;
(2)若∠B=m°,∠C=n°,(m<n),则∠DAE= °(直接用m、n表示).
9.(2020春·江苏·七年级校考期中)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
【探究1】:如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+∠A,(请补齐空白处)
理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,
∴∠1=∠ABC,_________________,
在ΔABC中,∠A+∠ABC+∠ACB=180º.
∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,
∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+∠A.
【探究2】:如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.
【应用】:如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;
【拓展】:如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.
10.(2020秋·江苏盐城·七年级统考期中)如图1,直线m与直线n相交于O,点A在直线m上运动,点B 在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.
(1)若∠BAO=50º,∠ABO=40º,求∠ACB的度数;
(2)如图2,若∠AOB=α,BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其度数(用含α的代数式表示);
(3)如图3,若直线m与直线n相互垂直,延长AB至E,已知∠ABO、∠OBE的角平分线与∠BOQ的角平分线及延长线分别相交于D、F,在△BDF中,如果有一个角是另一个角的3倍,请直接写出∠BAO的度数.
11.(2022春·江苏常州·七年级常州市清潭中学校考期中)阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”.例如:一个三角形三个内角的度数分别是,,,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍.
(1)如果一个“梦想三角形”有一个角为,那么这个“梦想三角形”的最小内角的度数为 ;
(2)如图1,已知,在射线上取一点,过点作交于点,以为端点作射线,交线段于点(点不与、重合),若.判定 “梦想三角形”(填是或者不是)
(3)如图2,点在的边上,连接,作的平分线交于点,在上取一点,使得,.若是“梦想三角形”,求的度数.
12.(2022春·江苏无锡·七年级校联考期中)如图①,的角平分线BD、CE相交于点P.
(1)如果,求的度数;
(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,试求的度数(用含的代数式表示);
(3)将(2)中的直线MN绕点P旋转,分别交线段AB于点M(不与A、B重合),交直线AC于N,试探索、、三者之间的数量关系,并说明理由;
13.(2020春·江苏徐州·七年级统考期中)∠MON=90°,点A,B分别在OM、ON上运动(不与点O重合).
(1)如图①,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB= °
(2)如图②,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D
①若∠BAO=60°,则∠D= °.
②随着点A,B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由.
(3)如图③,延长MO至Q,延长BA至G,已知∠BAO,∠OAG的平分线与∠BOQ的平分线及其延长线相交于点E、F,在△中,如果有一个角是另一个角的3倍,求∠ABO的度数.
14.(2020春·江苏盐城·七年级校联考期中)直线与直线垂直相交于点O,点A在直线上运动,点B在直线上运动.
(1)如图1,已知分别是和角的平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出的大小.
(2)如图2,已知不平行分别是和的角平分线,又分别是和的角平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出的度数.
(3)如图3,延长至G,已知的角平分线与的角平分线及反向延长线相交于,在中,如果有一个角是另一个角的3倍,则的度数为____(直接写答案)
参考答案:
1.(1)①;②;(2)①;②
【分析】(1)①由题意易得,然后根据“M型”角的关系可直接进行求解;②如图,由“铅笔头型”,可得结论:,则由题意得,进而可得,然后根据三角形外角的性质可得,最后问题可求解;
(2)①由题意易得,,然后根据三角形内角和可求解;②由题意易得,则有,进而根据三角形外角的性质可得,由三角形内角和可得,最后根据角的和差关系可进行求解.
【详解】解:(1)①由“M型”角的关系可得:,,
∵AF、CF分别平分∠A、∠C,
∴,
∴,
∴∠F与∠E的关系是;
故答案为;
②如图,
由“铅笔头型”,可得结论:,
∵AF、CF分别平分∠BAE、∠DCG,
∴,
∵AB∥CD,
∴,
∵,
∴由三角形外角的性质可得:,
∴;
故答案为;
(2)①,理由如下:
由邻补角可得:,
∵EG同时平分∠BEF和∠FGD,
∴,
∵,
∴,
∴;
②如图,
∵∠1比∠2的3倍多18°,∠2是∠F的,
∴,
∴,
∵EG同时平分∠BEF和∠FGD,∠BEF=180°-∠1,
∴,,
由三角形外角的性质可得:,
∴,
∵,
∴,
把代入化简得:,
∴.
【点睛】本题主要考查三角形内角和与外角的性质、平行线的性质及角平分线的定义,熟练掌握三角形内角和与外角的性质、平行线的性质及角平分线的定义是解题的关键.
2.(1)(i)见解析;(ii),理由见解析;(2)
【分析】(1)(i)根据平分可以得到,再根据,,即可得到答案;
(ii)设,根据,,即可求解;
(2)根据∠PDO=∠A+∠DBA,∠A+∠ABC=90°,∠ABC=∠CPG,利用角平分线的性质,即可得到.
【详解】解:(1)(i)∵平分,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∵,
∴.
(ii).
设,
∴.
∵,
∴,
又∵
∴
∴,
∴.
(2),理由如下:
∵∠ACB=90°
∴∠PCB=90°,∠A+∠ABC=90°
∵PQ⊥AB
∴∠PQB=∠PCB=90°
又∵∠CGP=∠BGQ
∴∠ABC=∠CPG
∵∠PDO=∠A+∠DBA,BD是∠ABC的角平分线
∴
∵PF是∠APQ的角平分线
∴
∴
∴∠POD=90°
∴PF⊥BD.
【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,对顶角的性质,平行线的判定,解题的关键在于能够熟练掌握相关知识进行求解.
3.(1)见详解;(2)100°;(3)∠P=45°-
【分析】(1)由“对顶三角形”的性质得,从而得,进而即可得到结论;
(2)设=x, =y,则=x+20°,=y-20°,可得∠ABC+∠DCB=y-20°,根据三角形内角和定理,列出方程,即可求解;
(3)设∠ABE=∠CBE=x,∠ACD=∠BCD=y,可得x+y=90°-,结合∠CEP+∠ACD=∠CDP+∠P,即可得到结论.
【详解】(1)证明:∵在“对顶三角形”与中,
∴,
∵,
∴,
∵,
∴,
又∵
∴;
(2)∵比大20°,+=+,
∴设=x, =y,则=x+20°,=y-20°,
∵,
∴∠ABC+∠ACB=180°-∠A=180°-=x+y,
∴∠ABC+∠DCB=∠ABC+∠ACB-= x+y- x-20°=y-20°,
∵∠ABC+∠DCB+=180°,
∴y-20°+y=180°,解得:y=100°,
∴=100°;
(3)∵,是的角平分线,
∴设∠ABE=∠CBE=x,∠ACD=∠BCD=y,
∴2x+2y+=180°,即:x+y=90°-,
∵和的平分线和相交于点P,
∴∠CEP=(180°-2y-x),∠CDP=(180°-2x-y),
∵∠CEP+∠ACD=∠CDP+∠P,
∴∠P=(180°-2y-x)+y-(180°-2x-y)= x+y=45°-,
即:∠P=45°-.
【点睛】本题主要考查角平分线的定义,三角形内角和定理,三角形外角的性质,熟练掌握“对顶三角形”的性质,是解题的关键.
4.(1)135°
(2)∠D的度数不随A、B的移动而发生变化,值为45°
(3)60°或45°
【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解;
(2)利用对顶角相等、两角互余、两角互补、角平分线性质即可求解;
(3)根据三角形的内角和定理及角平分线的性质不难得出=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO一定要小于90°,注意解得取舍.
【详解】(1)解:∵、分别是和的平分线,
∴∠EBA=∠OBA,∠BAE=∠BAO,
∵,
∴∠EAB+EBA=90°,
∵∠AEB+∠EAB+∠EBA=180°,
∴,
,
,
,
;
(2)解: ∠D的度数不随A、B的移动而发生变化,设∠BAD=α,
∵AD平分∠BAO,
∴∠BAO=2α,
∵∠AOB=90°,
∴∠ABN=180°-∠ABO=∠AOB+∠BAO=90+2α,
∵BC平分∠ABN,
∴∠ABC=45°+α,
∵∠ABC=180°-∠ABD=∠D+∠BAD,
∴∠D=∠ABC-∠BAD=45°+α-α=45°;
(3)解:∵∠BAO与∠BOQ的平分线交于点E,
∴∠AOE=135°,
∴,
,
,
,
∵AE、AF分别是∠BAO和∠OAG的平分线,
∴,
在△AEF中,若有一个角是另一个角的3倍,
则①当∠EAF=3∠E时,得∠E=30°,此时∠ABO=60°;
②当∠EAF=3∠F时,得∠E=60°,
此时∠ABO=120°>90°,舍去;
③当∠F=3∠E时,得,
此时∠ABO=45°;.
④当∠E=3∠F时,得,
此时∠ABO=135°>90°,舍去.
综上可知,∠ABO的度数为60°或45°.
【点睛】前两问熟练运用三角形内角和定理、直角三角形的两锐角互余、对顶角相等、角平分线性质等角的关系即可求解;第三问需先证明=90°,再分情况进行讨论,熟练运用三角形的内角和定理及角平分线的性质是解题的关键.
5.(1)45;
(2);
(3)3,-4
【分析】(1)根据角平分线的性质,直角三角形的两锐角互余,三角形的外角性质求解;
(2)分别作∠EAB与∠ECB的平分线,根据三角形的内角和定理和对顶角相等列等式,可得结论;
(3)先根据条件画图,设∠FAH=∠FAE=α,根据三角形的内角和定理分别表示∠FCH和∠FPH,代入∠FCH=m∠FAH+n∠FPH求解.
(1)
解:∠E=45°.
理由如下:∵AE平分∠DAC,CE平分∠ACB,
∴∠DAC=2∠2,∠ACB=2∠1,
∵∠DAC=∠B+∠ACB,∠B=90°,
∴2∠2=90°+2∠1,
∴∠2=45°+∠1,
又∵∠2=∠E+∠1
∴∠E=45°;
(2)
解:如图2所示,
∵CF平分∠ECB,
∴∠ECF=y.
∵∠E+∠EAF=∠F+∠ECF,
∴45°+∠EAF=∠F+y①,
同理可得:∠E+∠EAB=∠B+∠ECB,
∴45°+2∠EAF=90°+y,
∴∠EAF=②,
把②代入①得:45°+=∠F+y,
∴∠AFC=67.5°;
故答案为:67.5°;
(3)
解:如图3,设∠FAH=∠FAE=α,
∵∠AFM=∠AFC=×67.5°= .
∵∠E+∠EAF=∠AFC+∠FCH,
∴∠FCH=∠E+∠EAF-∠AFC=45°+α-67.5°=α- ①.
∵∠AHN=∠AHC=(∠B+∠BCH)=(90°+2∠FCH)=+∠FCH.
又∵∠FAH+∠AFM=∠AHN+∠FPH,∠AFM=∠AFC=×67.5°=,
∴α+=+∠FCH +∠FPH②,
将①代入②得.
∵∠FCH=m∠FAH+n∠FPH,
∴α-=mα+n[],
∴m+n=1,n=-22.5,
解得 m=3,n=-4.
故答案为:3,-4.
【点睛】本题考查了三角形内角和与外角的性质、角平分线的定义,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和,熟记性质并准确识图是解题的关键,要注意整体思想的利用.
6.(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)画图见解析;∠A+∠D=180°+2n°或180°﹣2n°.
【分析】(1) 根据三角形内角和定理可以算出∠A的大小,再根据角平分线的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠PCD=∠P+∠PBC,即可得解;
(2)和(1)证明方法类似,先证明∠A+∠ABC=2(∠P+∠PBC),再证明∠A=2∠P即可得到答案;
(3) 延长BA交CD的延长线于F根据三角形内角和定理和三角形的一个外角等于与它不相邻的两个内角的和,即可得到第一种情况;延长AB交DC的延长线于F,同理即可得到答案.
【详解】解:(1)∠A=30°,∠P=15°
∵∠ACD+∠ACB=180°,∠ACD=100°
∴∠ACB=80°,
∵∠ABC+∠ACB+∠A=180°(三角形内角和定理),
又∵∠ABC=70°,
∴∠A=30°,
∵P点是∠ABC和外角∠ACD的角平分线的交点,
∴∠PCD=∠ACD=50°,∠PBC=∠ABC=35°
∵∠PBC+∠PCB+∠P=180°,∠PCB+∠PCD=180°
∴∠PCD=∠PBC+∠P
∴∠P=50°-35°=15°
(2)结论:∠A=2n°,理由如下:
∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC(三角形的一个外角等于与它不相邻的两个内角和),
又∵P点是∠ABC和外角∠ACD的角平分线的交点,
∴∠ACD=2∠PCD,∠ABC=2∠PBC,
∴∠A+∠ABC=2(∠P+∠PBC)(等量替换),
∴∠A+∠ABC=2∠P+2∠PBC,
∴∠A+∠ABC=2∠P+∠ABC(等量替换),
∴∠A=2∠P;
∴∠A=2n°
(3)(Ⅰ)如图②延长BA交CD的延长线于F.
∵∠F=180°﹣∠FAD﹣∠FDA
=180°﹣(180°﹣∠A)﹣(180°﹣∠D)
=∠A+∠D﹣180°,
由(2)可知:∠F=2∠P=2n°,
∴∠A+∠D=180°+2n°。
(Ⅱ)如图③,延长AB交DC的延长线于F.
∵∠F=180°﹣∠A﹣∠D,∠P=∠F,
∴∠P=(180°﹣∠A﹣∠D)=90°﹣(∠A+∠D).
∴∠A+∠D=180°﹣2n°
综上所述:∠A+∠D=180°+2n°或180°﹣2n° ;
【点睛】本题主要考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题,属于中考常考题型.
7.(1)115;(2)180-2x,理由见解析;(3)45°.
【分析】(1)已知点I是两角∠ABC 、∠ACB平分线的交点,故
,由此可求∠BIC;
(2)当CE∥AB时, ∠ACE=∠A=x°,根据∠ACE=∠A=x°,根据CE是∠ACG的角平分线,推出∠ACG=2x°,∠ABC=∠BAC=x°,即可求出的度数.
(3)由题意知:△BDE是直角三角形∠D+∠E=90°,可求出若∠D=3∠E时,∠BEC=22.5°,再推理出,即可求出的度数.
【详解】(1)∵点I是两角∠ABC 、∠ACB平分线的交点,
∴
;
故答案为:115.
(2)当∠ACB等于(180-2x)°时,CE∥AB.理由如下:
∵CE∥AB,
∴∠ACE=∠A=x°,
∵∠ACE=∠A=x°,CE是∠ACG的角平分线,
∴∠ACG=2∠ACE=2x°,
∴∠ABC=∠ACG-∠BAC=2x°-x°=x°,
∴∠ACB=180°-∠BAC-∠ABC=(180-2x)°;
(3)由题意知:△BDE是直角三角形∠D+∠E=90°
若∠D=3∠E时∠BEC=22.5°,
∵
,
∴.
【点睛】本题考查了三角形的内角、外角平分线的夹角大小与原三角形内角的关系,要充分运用三角形内角和定理,角平分线性质转换.
8.(1)20°;(2)
【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.
(2)计算方法与(1)相同.
【详解】解:(1)∵∠B=35°,∠C=75°,
∴∠BAC=180°﹣35°﹣75°=70°,
∵AE平分∠BAC,
∴∠CAE=∠CAB=35°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠DAC=90°﹣75°=15°,
∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.
(2)∵∠B=m°,∠C=n°,
∴∠BAC=180°﹣m°﹣n°,
∵AE平分∠BAC,
∴∠CAE=∠CAB=90°﹣(m)°﹣(n)°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠DAC=90°﹣n°,
∴∠DAE=∠EAC﹣∠DAC=(n﹣m)°,
故答案为:(n﹣m).
【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.
【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-∠A,再根据三角形的内角和定理即可得出结论;
【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;
【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得∠G的度数,于是可得∠GCD+∠GDC的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;
【拓展】根据角平分线的定义和平角的定义可得∠EAF=90°,然后分三种情况讨论:若∠EAF=4∠E,则∠E=22.5°,根据角平分线的定义和三角形的外角性质可得∠ABO=2∠E,于是可得结果;若∠EAF=4∠F,则∠F=22.5°,由【探究2】的结论可求出∠ABO=135°,然后由三角形的外角性质即可判断此种情况不存在;若∠F=4∠E,则∠E=18°,然后再由第一种情况的结论∠ABO=2∠E即可求出结果,进而可得答案.
【详解】解:【探究1】理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,
∴∠1=∠ABC,∠2=∠ACB,
在ΔABC中,∠A+∠ABC+∠ACB=180º.
∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,
∴∠BOC=180º-(∠1+∠2)=180º-(90º-∠A)=90º+∠A;
故答案为:∠2=∠ACB,90º-∠A;
【探究2】∠BOC=90°﹣∠A;理由如下:
如图2,由三角形的外角性质和角平分线的定义,∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),
在△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB
=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),
=180°﹣(∠A+∠ACB+∠A+∠ABC),
=180°﹣(180°+∠A),
=90°﹣∠A;
【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得:∠G=,
∴∠GCD+∠GDC=45°,
∵CE、DE分别是∠ACD和∠BDC的角平分线,
∴∠1=∠ACD=,∠2=∠BDC=,
∴∠1+∠2=+=,
∴;
故答案为:22.5°;
【拓展】如图4,∵AE、AF是∠BAO和∠OAG的角平分线,
∴∠EAQ+∠FAQ=,
即∠EAF=90°,
在Rt△AEF中,若∠EAF=4∠E,则∠E=22.5°,
∵∠EOQ=∠E+∠EAQ,∠BOQ=2∠EOQ,∠BAO=2∠EAQ,
∴∠BOQ=2∠E+∠BAO,
又∠BOQ=∠BAO+∠ABO,
∴∠ABO=2∠E=45°;
若∠EAF=4∠F,则∠F=22.5°,
则由【探究2】知:,∴ ∠ABO=135°,
∵∠ABO<∠BOQ=60°,∴此种情况不存在;
若∠F=4∠E,则∠E=18°,
由第一种情况可知:∠ABO=2∠E,∴∠ABO=36°;
综上,∠ABO=45°或36°;
故答案为:45°或36°.
【点睛】本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键.
10.(1)135°;(2)不变,;(3)或
【分析】(1)由角平分线的性质分别求解∠CAB与∠CBA的大小,再通过三角形内角和定理求值.
(2)由三角形的外角定理及角平分线的性质求出∠3+∠4=∠1+∠2+α,∠4=∠2+∠D,再通过加减消元求出α与∠D的等量关系.
(3)先通过角平分线的性质求出∠FBD为90°,再分类讨论有一个角是另一个角的3倍的情况求解.
【详解】解:(1)、分别是和的角平分线,
,,
.
(2)的大小不发生变化,理由如下:如图,
平分,平分,平分,
,,,
是的外角,
,
即①,
是的外角,
,
即②,
由①②得,
解得.
(3)如图,
平分,平分,平分,
,,,
,
是的外角,
,
.
①当时,
,
,
,
.
②当时,
,
.
,不符合题意.
③当时,
,
解得,
,
.
④当时,,
,
解得,
,
,不符合题意.
综上所述,或.
【点睛】本题考查三角形的内角和定理与外角定理以及角平分线的性质,解题关键是熟练掌握三角形内角和与外角定理,通过分类讨论求解.
11.(1)或
(2)是
(3)或.
【分析】(1)分两种情形:当是三角形的一个内角的3倍,当另外两个内角是3倍关系,分别求解即可.
(2)根据“梦想三角形”的定义可以判断:都是“梦想三角形”.
(3)根据“梦想三角形”的定义,分两种情形分别求解即可.
【详解】(1)解:当是三角形的一个内角的3倍,则有这个内角为,第三个内角也是,故最小的内角是,
当另外两个内角是3倍关系,则有另外两个内角分别为:,,最小的内角是
故答案为:或.
(2)结论:是“梦想三角形”.
理由:,,,
,
,
是“梦想三角形”.
(3),,
,
,
,
,
,
,
,
平分,
,
,
是“梦想三角形”,
,或,
,
或.
【点睛】本题考查三角形内角和定理,“梦想三角形”的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
12.(1);
(2);
(3),,.
【分析】(1)利用角平分线的性质可求出,利用三角形内角和定理求出,即可求出;
(2)利用平行的性质证明,,进一步得到,再根据角平分线的性质可得;
(3)分情况讨论:①当N在线段AC上时,②当N在线段AC延长线上时,③当N在线段CA延长线上时,结合图形求解即可.
(1)
解:∵BD、CE平分和,
∴,
∴,
∵,
∴.
(2)
解:∵,
∴,,
∴,
∵BD、CE平分和,
∴,
∴.
(3)
解:分情况讨论:
①当N在线段AC上时,如图,
∵BD、CE平分和交于点P,
∴,
∴,
∴;
②当N在线段AC延长线上时,如图,
∵,,且,
∴
即;
③当N在线段CA延长线上时,如图,
∵,且,
∴.
【点睛】本题考查三角形内角和定理和角平分线,平行线的性质,解题的关键是画出正确的图象,会利用内角和表示角之间的关系.
13.(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45°
【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解;
(2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解;
②证明和推理过程同①的求解过程;
(3)由(2)的证明求解思路,不难得出=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO一定要小于90°,注意解得取舍.
【详解】(1)
(2)①如图所示
AD与BO交于点E,
②∠D的度数不随A、B的移动而发生变化
设,因为AD平分∠BAO,所以,因为∠AOB=90°,所以。因为BC平分,所以。又因为。所以
(3)因为∠BAO与∠BOQ的平分线交于点E,
所以,
所以
因为AE、AF分别是∠BAO和∠OAG的平分线,
所以在△AEF中,若有一个角是另一个角的3倍,
则①当时,得,此时
②当时,得,此时,舍去。
③当时,得,此时
④当时,得,此时,舍去。
综上可知,∠ABO的度数为60°或45°。
【点睛】前两问熟练运用三角形内角和定理、两角互余、两角互补、对顶角相等、角平分线性质等角的关系即可求解;第三问需先证明=90°,再分情况进行讨论.
14.(1)不发生变化,∠AEB=135°;(2)不发生变化,∠CED=67.5°;(3)60°或45°
【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO的角平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;
(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;
(3)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.
【详解】解:(1)∠AEB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∵AE、BE分别是∠BAO和∠ABO角的平分线,
∴∠BAE=∠OAB,∠ABE=∠ABO,
∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,
∴∠AEB=135°;
(2)∠CED的大小不变.
延长AD、BC交于点F.
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠MBA=270°,
∵AD、BC分别是∠BAP和∠ABM的角平分线,
∴∠BAD=∠BAP,∠ABC=∠ABM,
∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,
∴∠F=45°,
∴∠FDC+∠FCD=135°,
∴∠CDA+∠DCB=225°,
∵DE、CE分别是∠ADC和∠BCD的角平分线,
∴∠CDE+∠DCE=112.5°,
∴∠CED =67.5°;
(3)∵∠BAO与∠BOQ的角平分线相交于E,
∴∠EAO=∠BAO,∠EOQ=∠BOQ,
∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴∠EAF=90°.
在△AEF中,
∵有一个角是另一个角的3倍,故有:
①∠EAF=3∠E,∠E=30°,∠ABO=60°;
②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍弃);
③∠F=3∠E,∠E=22.5°,∠ABO=45°;
④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍弃).
∴∠ABO为60°或45°.
故答案为:60°或45°.
【点睛】本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
相关试卷
这是一份28三角形内角和定理的应用(提升题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份23与角平分线有关的三角形内角和问题(基础题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份29三角形内角和定理的应用(压轴题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】,共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。