终身会员
搜索
    上传资料 赚现金
    第26讲 双星、多星模型(原卷版)第1页
    第26讲 双星、多星模型(原卷版)第2页
    第26讲 双星、多星模型(原卷版)第3页
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第26讲 双星、多星模型(原卷版)

    展开

    这是一份第26讲 双星、多星模型(原卷版),共9页。试卷主要包含了三星模型,多星模型的解题步骤等内容,欢迎下载使用。
    26双星、多星模型1.(重庆高考)冥王星与其附近的另一星体卡戎可视为双星系统.质量比约为71,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的(  )A.轨道半径约为卡戎的 B.角速度大小约为卡戎的 C.线速度大小约为卡戎的7 D.向心力大小约为卡戎的7一.知识回顾1.双星模型(1)两颗星体绕公共圆心转动,如图1所示。(2)特点各自所需的向心力由彼此间的万有引力相互提供,即=m1ωr1=m2ωr2两颗星的周期及角速度都相同,即T1=T2,ω1=ω2两颗星的轨道半径与它们之间的距离关系为:r1+r2=L。两颗星到轨道圆心的距离r1、r2与星体质量成反比,即双星的运动周期T=2π双星的总质量m1+m22.三星模型(1)三星系统绕共同圆心在同一平面内做圆周运动时比较稳定,三颗星的质量一般不同,其轨道如图2所示。每颗星体做匀速圆周运动所需的向心力由其他星体对该星体的万有引力的合力提供。(2)特点:对于这种稳定的轨道,除中央星体外(如果有),每颗星体转动的方向相同,运行的角速度、周期相同。(3)理想情况下,它们的位置具有对称性,下面介绍两种特殊的对称轨道。三颗星位于同一直线上,两颗质量均为m的环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图3甲所示)。三颗质量均为m的星体位于等边三角形的三个顶点上(如图3乙所示)。3.四星模型:(1)如图所示,四颗质量相等的行星位于正方形的四个顶点上,沿外接于正方形的圆轨道做匀速圆周运动。×2×cos 45°+=ma,其中r= L。四颗行星转动的方向相同,周期、角速度、线速度的大小相等。(2)如图所示,三颗质量相等的行星位于正三角形的三个顶点,另一颗恒星位于正三角形的中心O点,三颗行星以O点为圆心,绕正三角形的外接圆做匀速圆周运动。×2×cos 30°+=ma其中L=2rcos 30°。外围三颗行星转动的方向相同,周期、角速度、线速度的大小均相等。5.解题要诀:(1)根据双星或多星的运动特点及规律,确定系统的中心以及运动的轨道半径。(2)星体的向心力由其他天体的万有引力的合力提供。(3)星体的角速度相等。(4)星体的轨道半径不是天体间的距离。要利用几何知识,寻找两者之间的关系,正确计算万有引力和向心力。6多星模型的解题步骤(1)明确各星体的几何位置,画出示意图;(2)明确各星体的转动方式,找出各星体做圆周运动的共同的圆心位置,确定各星体运动的轨道半径;(3)受力分析,确定每颗星体向心力的来源;(4)抓住每颗星体做匀速圆周运动的周期和角速度相同这一特点,列式解题二.例题精析1.我国天文学家通过“天眼”在武仙座球状星团M13中发现一个脉冲双星系统。如图所示,由恒星A与恒星B组成的双星系统绕其连线上的O点各自做匀速圆周运动,经观测可知恒星B的运行周期为T。若恒星A的质量为m,恒星B的质量为2m,引力常量为G,则恒星AO点间的距离为(  )A B C D(多选)例2.近年科学研究发现,在宇宙中,三恒星系统约占所有恒星系统的十分之一,可见此系统是一个比较常见且稳定的系统。在三恒星系统中存在这样一种运动形式:忽略其他星体对它们的作用,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在平面内以相同角速度做匀速圆周运动。如图所示为ABC三颗星体质量mAmBmC大小不同时,星体运动轨迹的一般情况。设三颗星体在任意时刻受到的万有引力的合力大小分别为F1F2F3,加速度大小分别为a1a2a3,星体轨迹半径分别为RARBRC,下列说法正确的是(  )A.若三颗星体质量关系有mAmBmC,则三颗星体运动轨迹圆为同一个 B.若三颗星体运动轨迹半径关系有RARBRC,则三颗星体质量大小关系为mAmBmC CF1F2F3的矢量和一定为0,与星体质量无关 Da1a2a3的矢量和一定为0,与星体质量无关3.经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1m232.则可知(  )Am1m2做圆周运动的线速度之比为32 Bm1m2做圆周运动的角速度之比为32 Cm1做圆周运动的半径为 Dm2做圆周运动的半径为三.举一反三,巩固练习20215月,基于俗称“中国天眼”的500米口径球面射电望远镜(FAST)的观测,国家天文台李菂、朱炜玮研究团组姚菊枚博士等首次研究发现脉冲星三维速度与自转轴共线的证据。之前的20203月,我国天文学家通过FAST,在武仙座球状星团(M13)中发现一个脉冲双星系统。如图所示,假设在太空中有恒星AB双星系统绕点O做顺时针匀速圆周运动,运动周期为T1,它们的轨道半径分别为RARBRARBCB的卫星,绕B做逆时针匀速圆周运动,周期为T2,忽略AC之间的引力,万引力常量为G,则以下说法正确的是(  )A.若知道C的轨道半径,则可求出C的质量 B.若A也有一颗运动周期为T2的卫星,则其轨道半径大于C的轨道半径 C.恒星B的质量为 D.设ABC三星由图示位置到再次共线的时间为t,则(多选)经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1m232.则下列结论不正确的是(  )Am1m2做圆周运动的线速度之比为32 Bm1m2做圆周运动的角速度之比为11 Cm1做圆周运动的半径为L Dm2做圆周运动的半径为L宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用,已观测到稳定的三星系统存在形式之一是:三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行,设每个星体的质量均为M,则(  )A.环绕星运动的线速度为 B.环绕星运动的线速度为 C.环绕星动的周期为运T2π D.环绕星运动的周期为T4π(多选)2012726日,一个国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O做匀速圆周运动,如图所示.此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的,假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中(  )A.它们做圆周运动的万有引力保持不变 B.它们做圆周运动的角速度不变 C.体积较大星体圆周运动轨迹半径变大,线速度也变大 D.体积较大星体圆周运动轨迹半径变大,线速度变小美国科学家通过射电望远镜观察到宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统:三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行.设每个星体的质量均为M,忽略其它星体对它们的引力作用,则(  )A.环绕星运动的周期为T2π B.环绕星运动的周期为T2π C.环绕星运动的线速度为 D.环绕星运动的角速度为经长期观测人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1m232.则可知(  )Am1m2做圆周运动的角速度之比为23 Bm1m2做圆周运动的线速度之比为32 Cm1做圆周运动的半径为 Dm2做圆周运动的半径为在地月系统中,若忽略其它天体的影响,可将地球和月球看成双星系统,即地球和月球在彼此引力作用下做匀速圆周运动.科学探测表明,月球上蕴藏着极其丰富的矿物质,设想人类开发月球,月球上的矿藏被不断地搬运到地球上.假设经过长时间开采后,地球和月球仍可以看作均匀球体,地球和月球之间的距离保持不变,则(  )A.地球与月球之间的引力增大 B.地球与月球之间的引力减小 C.月球运动的周期增大 D.月球运动的周期减小经过观察,科学家在宇宙中发现了许多孤立的双星系统.若双星系统中每个星体的质量都是M,两者相距为L(远大于星体半径),它们正绕两者连线的中点做圆周运动.       试计算双星系统中的运动周期T计算若实际观察到的运动周期为T观测,且T观测T计算1N1),为了解释T观测T计算的不同,目前理论认为,宇宙中可能存在观察不到的暗物质,假定有一部分暗物质对双星运动产生影响,该部分物质的作用等效于暗物质集中在双星的连线的中点,试证明暗物质的质量M′与星体的质量M之比为M′:MN4       我们知道在一个恒星体系中,各个恒星绕着该恒星的运转半径r及运转周期T之间,一般存在以下关系:K的值由中心的恒星的质量决定.现在,天文学家又发现了相互绕转的三颗恒星,可以将其称为三星系统.如图所示,假设三颗恒星质量相同,均为m,间距也相同.它们仅在彼此的引力作用下围绕着三星系统的中心点O做匀速圆周运动,运动轨迹完全相同.它们自身的大小与它们之间的距离相比,自身的大小可以忽略.请你通过计算定量说明:三星系统的运转半径的立方与运转周期的平方的比值应为多少.(万有引力常量G
     

    相关试卷

    模型12双星多星模型-2024高考物理备考专题:

    这是一份模型12双星多星模型-2024高考物理备考专题,文件包含模型12双星多星模型原卷版-2024高考物理备考专题pdf、模型12双星多星模型解析版-2024备考专题pdf等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    6-3双星和多星模型(解析版)--2024高考一轮物理复习100考点100讲:

    这是一份6-3双星和多星模型(解析版)--2024高考一轮物理复习100考点100讲,共17页。试卷主要包含了3 讲 双星与多星系统等内容,欢迎下载使用。

    第26讲 双星、多星模型(解析版):

    这是一份第26讲 双星、多星模型(解析版),共13页。试卷主要包含了故A正确,三星模型,多星模型的解题步骤等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map