沪科版九年级上册23.2解直角三角形及其应用获奖ppt课件
展开1.巩固解直角三角形有关知识;(重点)2.能运用解直角三角形知识解决仰角、俯角和方位角有关的实际问题.(重点、难点)
某探险者某天到达如图所示的点A 处时,他准备估算出离他的目的地,海拔为3 500 m的山峰顶点B处的水平距离.他能想出一个可行的办法吗? 通过这节课的学习,相信你也行.
如图,在进行测量时,从下向上看,视线与水平线上方的夹角叫做仰角;从上往下看,视线与水平线下方的夹角叫做俯角.
探索1:仰角与俯角的定义
解:在Rt△ACD中,∠ACD=52°,CD=EB=8m,由tan∠ACD= ,得AD=CD·tan∠ACD=8×tan52°=8×1.2799≈10.2m.由DB=CE=1.6m,得AB=AD+DB=10.2+1.6=11.8m.答:树高AB为11.8m.
如图,一学生要测量校园内一棵水杉树的高度,他站在距离水杉树8m的E处,测得树顶的仰角∠ACD=52°,已知测角器的架高CE=1.6m,问树高AB为多少?(精确到0.1米)
如图所示,一架飞机在空中A点测得飞行高度为h米,从飞机上看到地面指挥站B的俯角为α,则飞机与地面指挥站间的水平距离为( )
A.h·sinα米 B.h·csα米C.h·tanα米 D. 米
解决本章引言所提问题.如图,某校九年级学生要测量当地电视塔的高度AB,因为不能直接到达塔底B处,他们采用在发射台院外与电视塔底B成一直线的C,D两处地面上,用测角器测得电视塔顶部A的仰角分别为45°和30°,同时量得CD为50 m.已知测角器高为1 m,问电视塔的高度为多少米?(精确到1 m)
解: 设AB1=xm.在Rt△AC1B1中,由∠AC1B1=45°,得 C1B1=AB1.在Rt△AC1B1中,由∠AD1B1=30°,得
∴AB=AB1+B1B≈68+1=69(m)答:电视塔的高度为69m.
如图,直升飞机在跨江大桥AB的上方P点处,此时飞机离地面的高度PO=450米,且A、B、O三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB .
变题1:如图,直升飞机在长400米的跨江大桥AB的上方P点处,且A、B、O三点在一条直线上,在大桥的两端测得飞机的仰角分别为30°和45 °,求飞机的高度PO .
如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO .
变题2:如图,直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离.
在方位轴中,从某点的正北方向沿顺时针方向旋转到目标方向所形成的角,叫做方位角.
OB的方位角为135°
从正北方向或正南方向到目标方向所形成的锐角叫做方向角.
OA的方向角为北偏东25°
OB的方向角为南偏东70°
OC的方向角为南偏西50°
OD的方向角为北偏西45°,也叫西北方向
如图,一船以20 n mile/h 的中速度向东航行,在A处测得灯塔C在北偏东60°方向上,继续航行 1 h 到达B处,再测得灯塔C在北偏东30°方向上.已知灯塔C四周 10 n mile内有暗礁,问这船继续向东航行,是否安全?
【分析】这船继续向东航行是否安全,取决于灯塔C到AB航线的距离是否大于 10 n mile.
解:由点C作CD⊥AB,
所以,这船继续向东航行是安全的.
由AB=AD-BD,得
如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01 n mile)?
解:过点P作PC⊥AB,C是垂足. 则∠APC=30°,∠BPC=45°, AC=PC·tan30°,BC=PC·tan45°. ∵AC+BC=AB, ∴PC · tan30°+PC · tan45°=200, 即 PC+PC=200, 解得 PC≈126.8km>100km. 答:计划修筑的这条高速公 路不会穿越保护区.
1. 如图①,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为45°,则船与观测者之间的水平距离BC=_________米.2. 如图②,两建筑物AB和CD的水平距离为30米,从A点测得 D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为_____米.
为测量松树AB的高度,一个人站在距松树15米的E 处,测得仰角∠ACD=52°,已知人的高度是1.72米, 则树高 (精确到0.1米).
如图,在电线杆上离地面高度5m的C点处引两根拉线固定电线杆,一根拉线AC和地面成60°角,另一 根拉线BC和地面成45°角.则两根拉线的总长度为 m(结果用带根号的数的形式表示).
一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°方向还有一个加油站C,C到高速公路的最短距离是30km,B,C间的距离是60km,想要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C的距离相等,请求出交叉口P到加油站A的距离(结果保留根号).
分析:此题针对点P的位置分两种情况讨论,即点P可能在线段AB上,也可能在BA的延长线上.
(2)如图②,同理可求得 km, AD=30km.
如图,一架飞机从A地飞往B地,两地相距600km.飞行员为了避开某一区域的雷雨云层,从机场起飞以后,就沿与原来的飞行方向成30°角的方向飞行,飞行到中途,再沿与原来的飞行方向成45°角的方向继续飞行直到终点.这样飞机的飞行路程比原来的路程600km远了多少?
在Rt△ACD中,
747-600=147(km).答:飞机的飞行路程比原来的路程600km远了147km.
仰角、俯角问题的常见基本模型:
初中数学华师大版九年级上册24.4 解直角三角形教学演示课件ppt: 这是一份初中数学华师大版九年级上册24.4 解直角三角形教学演示课件ppt,共11页。PPT课件主要包含了完成第2课时练习等内容,欢迎下载使用。
湘教版九年级上册4.4 解直接三角形的应用一等奖课件ppt: 这是一份湘教版九年级上册4.4 解直接三角形的应用一等奖课件ppt,共16页。PPT课件主要包含了观察与思考,俯角的概念,水平线,β60°,BCDC40m,练一练,解得x400,解直角三角形的应用等内容,欢迎下载使用。
初中数学湘教版九年级上册4.4 解直接三角形的应用完美版ppt课件: 这是一份初中数学湘教版九年级上册4.4 解直接三角形的应用完美版ppt课件,共16页。PPT课件主要包含了观察与思考,俯角的概念,水平线,铅垂线,a30°,β60°,BCDC40m,练一练,解得x400,答塔高约为45米等内容,欢迎下载使用。